論文の概要: Deep Geospatial Interpolation Networks
- arxiv url: http://arxiv.org/abs/2108.06670v1
- Date: Sun, 15 Aug 2021 06:57:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-18 04:12:23.100071
- Title: Deep Geospatial Interpolation Networks
- Title(参考訳): 深部地理空間補間ネットワーク
- Authors: Sumit Kumar Varshney, Jeetu Kumar, Aditya Tiwari, Rishabh Singh,
Venkata M. V. Gunturi, and Narayanan C. Krishnan
- Abstract要約: 我々はDGIN(Deep Geospatial Interpolation Network)と呼ばれる新しいディープニューラルネットワークを提案する。
DGINは空間的および時間的関係を持ち、トレーニング時間を大幅に短縮する。
2つの異なる領域からMODISデータセット上でDGINを評価する。
- 参考スコア(独自算出の注目度): 15.942343748489376
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interpolation in Spatio-temporal data has applications in various domains
such as climate, transportation, and mining. Spatio-Temporal interpolation is
highly challenging due to the complex spatial and temporal relationships.
However, traditional techniques such as Kriging suffer from high running time
and poor performance on data that exhibit high variance across space and time
dimensions. To this end, we propose a novel deep neural network called as Deep
Geospatial Interpolation Network(DGIN), which incorporates both spatial and
temporal relationships and has significantly lower training time. DGIN consists
of three major components: Spatial Encoder to capture the spatial dependencies,
Sequential module to incorporate the temporal dynamics, and an Attention block
to learn the importance of the temporal neighborhood around the gap. We
evaluate DGIN on the MODIS reflectance dataset from two different regions. Our
experimental results indicate that DGIN has two advantages: (a) it outperforms
alternative approaches (has lower MSE with p-value < 0.01) and, (b) it has
significantly low execution time than Kriging.
- Abstract(参考訳): 時空間データの補間は、気候、輸送、鉱業など様々な分野で応用されている。
時空間補間は複雑な空間的・時間的関係のために非常に困難である。
しかしながら、krigingのような伝統的なテクニックは、高い実行時間と、空間と時間次元にまたがる高いばらつきを示すデータに対する低パフォーマンスに苦しむ。
そこで本研究では,空間的および時間的関係を包含し,トレーニング時間を大幅に短縮したDGIN(Deep Geospatial Interpolation Network)という,新しいディープニューラルネットワークを提案する。
DGINは、空間的依存関係をキャプチャする空間エンコーダ、時間的ダイナミクスを組み込むシークエンシャルモジュール、ギャップ周辺の時間的近傍の重要性を学ぶためのアテンションブロックの3つの主要コンポーネントから構成される。
2つの異なる領域のMODIS反射率データセット上でDGINを評価する。
実験結果から,DGINには2つの利点があることが示唆された。 (a) 代替手法(p値 < 0.01) で MSE が低く, (b) 実行時間がKriging よりもかなり低い。
関連論文リスト
- Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
本稿では,AHSTN(Adaptive Hierarchical SpatioTemporal Network)を提案する。
AHSTNは空間階層を利用し、マルチスケール空間相関をモデル化する。
2つの実世界のデータセットの実験により、AHSTNはいくつかの強いベースラインよりも優れたパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2023-06-15T14:50:27Z) - Multi-Temporal Relationship Inference in Urban Areas [75.86026742632528]
場所間の時間的関係を見つけることは、動的なオフライン広告やスマートな公共交通計画など、多くの都市アプリケーションに役立つ。
空間的に進化するグラフニューラルネットワーク(SEENet)を含むグラフ学習方式によるTrialの解を提案する。
SEConvは時間内アグリゲーションと時間間伝搬を実行し、位置メッセージパッシングの観点から、多面的に空間的に進化するコンテキストをキャプチャする。
SE-SSLは、位置表現学習を強化し、関係の空間性をさらに扱えるように、グローバルな方法でタイムアウェアな自己教師型学習タスクを設計する。
論文 参考訳(メタデータ) (2023-06-15T07:48:32Z) - SARN: Structurally-Aware Recurrent Network for Spatio-Temporal Disaggregation [8.636014676778682]
オープンデータは、通常プライバシーポリシーに従うために、しばしば空間的に集約される。しかし、粗い、異質な集約は、下流のAI/MLシステムに対する一貫性のある学習と統合を複雑にする。
本稿では,空間的注意層をGRU(Gated Recurrent Unit)モデルに統合したSARN(Structurely-Aware Recurrent Network)を提案する。
履歴学習データに制限のあるシナリオでは、ある都市変数に事前学習したモデルを、数百のサンプルのみを用いて、他の都市変数に対して微調整できることを示す。
論文 参考訳(メタデータ) (2023-06-09T21:01:29Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
時間グラフは連続時間を通してノード間の動的相互作用を示す。
本研究では,周辺地域全体と時間的グラフ畳み込みの新たな手法を提案する。
提案するTAP-GNNは,予測性能とオンライン推論遅延の両面で,既存の時間グラフ手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-04-15T08:17:18Z) - STJLA: A Multi-Context Aware Spatio-Temporal Joint Linear Attention
Network for Traffic Forecasting [7.232141271583618]
非効率な時空間継手線形注意(SSTLA)と呼ばれる交通予測のための新しいディープラーニングモデルを提案する。
SSTLAは、全時間ノード間のグローバル依存を効率的に捉えるために、ジョイントグラフに線形注意を適用する。
実世界の2つの交通データセットであるイングランドとテンポラル7の実験は、我々のSTJLAが最先端のベースラインよりも9.83%と3.08%の精度でMAE測定を達成できることを示した。
論文 参考訳(メタデータ) (2021-12-04T06:39:18Z) - Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network [39.65520262751766]
我々は新しい交通予測フレームワーク-時空間グラフ拡散ネットワーク(ST-GDN)を開発した。
特にST-GDNは階層的に構造化されたグラフニューラルネットワークアーキテクチャであり、局所的な地域的な地理的依存関係だけでなく、グローバルな視点から空間的意味論も学習する。
複数の実生活トラフィックデータセットの実験では、ST-GDNは最先端のベースラインの異なるタイプよりも優れていることが示されている。
論文 参考訳(メタデータ) (2021-10-08T11:19:06Z) - Spatial-Temporal Graph ODE Networks for Traffic Flow Forecasting [22.421667339552467]
時空間予測は幅広い応用において大きな注目を集めており、交通流予測は標準的で典型的な例である。
既存の研究は通常、浅いグラフ畳み込みネットワーク(GNN)と時間的抽出モジュールを使用して、それぞれ空間的および時間的依存関係をモデル化する。
テンソル型常微分方程式(ODE)を用いて時空間ダイナミクスを捉える時空間グラフ正規微分方程式ネットワーク(STGODE)を提案する。
我々は,複数の実世界の交通データセット上でモデルを評価し,最先端のベースライン上で優れた性能を実現する。
論文 参考訳(メタデータ) (2021-06-24T11:48:45Z) - SST-GNN: Simplified Spatio-temporal Traffic forecasting model using
Graph Neural Network [2.524966118517392]
我々は,SST-GNN(SST-GNN)を簡易に設計し,異なる地区を個別に集約することで依存性を効果的に符号化した。
我々は,本モデルが3つの実環境トラフィックデータセットの最先端モデルよりも大幅に優れていることを示した。
論文 参考訳(メタデータ) (2021-03-31T18:28:44Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
交通予測のための地理・長期時間グラフ畳み込み型ニューラルネットワーク(GLT-GCRNN)を提案する。
本研究では,地理的・長期的時間的パターンを共有する道路間のリッチな相互作用を学習する交通予測のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-23T03:50:46Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
空間連続性をもつ空間時間減衰ネットワーク(STAN-SC)という新しいモデルを提案する。
まず、最も有用かつ重要な情報を探るために、空間的時間的注意機構を提示する。
第2に、生成軌道の空間的連続性を維持するために、シーケンスと瞬間状態情報に基づく共同特徴系列を実行する。
論文 参考訳(メタデータ) (2020-03-13T04:35:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。