論文の概要: Multi-Slice Dense-Sparse Learning for Efficient Liver and Tumor
Segmentation
- arxiv url: http://arxiv.org/abs/2108.06761v1
- Date: Sun, 15 Aug 2021 15:29:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-17 15:29:57.435549
- Title: Multi-Slice Dense-Sparse Learning for Efficient Liver and Tumor
Segmentation
- Title(参考訳): 効率的な肝・腫瘍分離のためのマルチスライスドスパース学習
- Authors: Ziyuan Zhao, Zeyu Ma, Yanjie Liu, Zeng Zeng, Pierce KH Chow
- Abstract要約: ディープ畳み込みニューラルネットワーク(DCNN)は2次元および3次元の医用画像セグメンテーションにおいて大きな成功を収めている。
そこで我々は,DCNNを正規化するための入力として,密接な隣接スライスと疎隣接スライスを抽出するデータの観点から,新しい密集スプリストレーニングフローを提案する。
また、ネットワークの観点から2.5Dの軽量nnU-Netを設計し、その効率を向上させるために深度的に分離可能な畳み込みを採用する。
- 参考スコア(独自算出の注目度): 4.150096314396549
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate automatic liver and tumor segmentation plays a vital role in
treatment planning and disease monitoring. Recently, deep convolutional neural
network (DCNNs) has obtained tremendous success in 2D and 3D medical image
segmentation. However, 2D DCNNs cannot fully leverage the inter-slice
information, while 3D DCNNs are computationally expensive and memory intensive.
To address these issues, we first propose a novel dense-sparse training flow
from a data perspective, in which, densely adjacent slices and sparsely
adjacent slices are extracted as inputs for regularizing DCNNs, thereby
improving the model performance. Moreover, we design a 2.5D light-weight
nnU-Net from a network perspective, in which, depthwise separable convolutions
are adopted to improve the efficiency. Extensive experiments on the LiTS
dataset have demonstrated the superiority of the proposed method.
- Abstract(参考訳): 正確な肝臓と腫瘍のセグメンテーションは、治療計画と疾患モニタリングにおいて重要な役割を果たす。
近年,深層畳み込みニューラルネットワーク (dcnns) は2次元および3次元医用画像分割において大きな成功を収めている。
しかし、2D DCNNはスライス間情報を十分に活用できないが、3D DCNNは計算コストが高く、メモリ集約的である。
これらの問題に対処するために,我々はまずデータの観点から,DCNNを正規化するための入力として,密に隣接したスライスと疎に隣接したスライスを抽出し,モデル性能を向上する,新しい密分なトレーニングフローを提案する。
さらに,ネットワークの観点から2.5次元軽量nnu-netの設計を行い,その効率向上のために奥行き分離可能な畳み込みを採用する。
LiTSデータセットの大規模な実験により,提案手法の優位性を実証した。
関連論文リスト
- Self-supervised learning via inter-modal reconstruction and feature
projection networks for label-efficient 3D-to-2D segmentation [4.5206601127476445]
ラベル効率のよい3D-to-2Dセグメンテーションのための新しい畳み込みニューラルネットワーク(CNN)と自己教師付き学習(SSL)手法を提案する。
異なるデータセットの結果から、提案されたCNNは、ラベル付きデータに制限のあるシナリオにおいて、Diceスコアの最大8%まで、アートの状態を著しく改善することが示された。
論文 参考訳(メタデータ) (2023-07-06T14:16:25Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
本稿では,高画質なセグメンテーションマスクと,パラメータ,計算コスト,推論速度の両面での効率性を提供するUNETR++という3次元医用画像セグメンテーション手法を提案する。
我々の設計の核となるのは、空間的およびチャネル的な識別的特徴を効率的に学習する、新しい効率的な対注意ブロック(EPA)の導入である。
Synapse, BTCV, ACDC, BRaTs, Decathlon-Lungの5つのベンチマークで評価した結果, 効率と精度の両面で, コントリビューションの有効性が示された。
論文 参考訳(メタデータ) (2022-12-08T18:59:57Z) - Dual Multi-scale Mean Teacher Network for Semi-supervised Infection
Segmentation in Chest CT Volume for COVID-19 [76.51091445670596]
CT(Computed tomography)データから肺感染症を自動的に検出することは、COVID-19と戦う上で重要な役割を担っている。
現在の新型コロナウイルス感染症のセグメンテーションのほとんどは、主に3Dシーケンシャルな制約を欠いた2D CT画像に依存している。
既存の3次元CTセグメンテーション法では,3次元ボリュームにおける複数レベルの受容場サイズを達成できない単一スケールの表現に焦点が当てられている。
論文 参考訳(メタデータ) (2022-11-10T13:11:21Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
アンロールされたニューラルネットワークは、最近最先端の加速MRI再構成を達成した。
これらのネットワークは、物理ベースの一貫性とニューラルネットワークベースの正規化を交互に組み合わせることで、反復最適化アルゴリズムをアンロールする。
我々は,高次元画像設定のための効率的なトレーニング戦略である加速度MRI再構成のためのグレディ・ラーニングを提案する。
論文 参考訳(メタデータ) (2022-07-18T06:01:29Z) - HIVE-Net: Centerline-Aware HIerarchical View-Ensemble Convolutional
Network for Mitochondria Segmentation in EM Images [3.1498833540989413]
より効率的な2次元畳み込みを用いた3次元空間コンテキスト学習のための新しい階層型ビューアンサンブル畳み込み(HVEC)を提案する。
提案手法は, 精度と画質は良好だが, モデルサイズは大幅に小さく, 最先端の手法に対して好適に機能する。
論文 参考訳(メタデータ) (2021-01-08T06:56:40Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
2流グラフ畳み込みネットワーク(TSGCNet)を提案し、異なる幾何学的特性から多視点情報を学ぶ。
3次元口腔内スキャナーで得られた歯科モデルのリアルタイムデータセットを用いてTSGCNetの評価を行った。
論文 参考訳(メタデータ) (2020-12-26T08:02:56Z) - Efficient embedding network for 3D brain tumor segmentation [0.33727511459109777]
本稿では,脳腫瘍の3次元的セマンティックセグメンテーションを目的とした2次元分類網の性能伝達手法について検討する。
入力データが3Dの場合、エンコーダの第1層は、効率の良いNetネットワークの入力に適合するために、第3次元の削減に費やされる。
BraTS 2020チャレンジの検証とテストデータに関する実験結果から,提案手法が有望な性能を達成することを示す。
論文 参考訳(メタデータ) (2020-11-22T16:17:29Z) - Volumetric Medical Image Segmentation: A 3D Deep Coarse-to-fine
Framework and Its Adversarial Examples [74.92488215859991]
本稿では,これらの課題に効果的に取り組むために,新しい3Dベースの粗粒度フレームワークを提案する。
提案した3Dベースのフレームワークは、3つの軸すべてに沿ってリッチな空間情報を活用できるため、2Dよりも大きなマージンで優れている。
我々は,3つのデータセット,NIH膵データセット,JHMI膵データセット,JHMI病理嚢胞データセットについて実験を行った。
論文 参考訳(メタデータ) (2020-10-29T15:39:19Z) - DDU-Nets: Distributed Dense Model for 3D MRI Brain Tumor Segmentation [27.547646527286886]
分散高密度接続(DDC)の3つのパターンが提案され,CNNの機能再利用と伝播が促進される。
DDC(DDU-Nets)を組み込んだCNNベースのモデルでは,3次元MR画像から脳腫瘍をよりよく検出し,セグメンテーションするために,ピクセルからピクセルへの効率よくトレーニングを行う。
提案手法はBraTS 2019データセットで評価され,DDU-Netsの有効性が示された。
論文 参考訳(メタデータ) (2020-03-03T05:08:34Z) - 2D Convolutional Neural Networks for 3D Digital Breast Tomosynthesis
Classification [20.245580301060418]
分類のための自動手法を開発する際の主な課題は、スライス数の可変処理とスライス・ツー・スライスの変更の維持である。
本稿では,両課題を同時に克服する,新しい2次元畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
提案手法は,スライス数にかかわらず全ボリュームで動作するため,特徴抽出に2次元CNNを事前学習することが可能である。
論文 参考訳(メタデータ) (2020-02-27T18:32:52Z) - 2.75D: Boosting learning by representing 3D Medical imaging to 2D
features for small data [54.223614679807994]
3D畳み込みニューラルネットワーク(CNN)は、多くのディープラーニングタスクにおいて、2D CNNよりも優れたパフォーマンスを示し始めている。
3D CNNにトランスファー学習を適用することは、パブリックにトレーニング済みの3Dモデルがないために困難である。
本研究では,ボリュームデータの2次元戦略的表現,すなわち2.75Dを提案する。
その結果,2次元CNNネットワークをボリューム情報学習に用いることが可能となった。
論文 参考訳(メタデータ) (2020-02-11T08:24:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。