Supply of engineering techniques and software design patterns in
psychoanalysis and psychometrics sciences
- URL: http://arxiv.org/abs/2108.06963v1
- Date: Mon, 16 Aug 2021 08:36:37 GMT
- Title: Supply of engineering techniques and software design patterns in
psychoanalysis and psychometrics sciences
- Authors: Omid Shokrollahi
- Abstract summary: The purpose of this study is to introduce software technologies and models and artificial intelligence algorithms to improve the weaknesses of CBT (Cognitive Behavior Therapy) method in psychotherapy.
The presentation method for this purpose is the implementation of psychometric experiments in which the hidden human variables are inferred from the answers of tests.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The purpose of this study is to introduce software technologies and models
and artificial intelligence algorithms to improve the weaknesses of CBT
(Cognitive Behavior Therapy) method in psychotherapy. The presentation method
for this purpose is the implementation of psychometric experiments in which the
hidden human variables are inferred from the answers of tests. In this report,
we describe the various models of Item Response Theory and measure the hidden
components of ability and complementary parameters of the reality of the
individual's situation. Psychometrics, selecting the appropriate model and
estimating its parameters have been introduced and implemented using R language
developed libraries. Due to the high flexibility of the Multi variant Rasch
mixture Model, machine learning has been applied to this method of data
modeling. BIC and CML were used to determine the number of hidden classes of
the model and its parameters respectively, to obtain Measurement Invariance.
The sensitivity of items to hidden attributes varies between groups (DIF), so
methods for detecting it are introduced. This simulation is done based on the
Verbal Aggression Dataset. We also analyze and compile a reference model based
on this certificate based on the discovered patterns of software engineering.
Other achievements of this study are related to providing a solution to explain
the reengineering problems of the mind, by preparing an identity card for the
clients by an ontology. Finally, applying the developed knowledge in the form
of system thinking and recommended patterns in software engineering during the
treatment process is pointed out.
Related papers
- AI-Aided Kalman Filters [65.35350122917914]
The Kalman filter (KF) and its variants are among the most celebrated algorithms in signal processing.
Recent developments illustrate the possibility of fusing deep neural networks (DNNs) with classic Kalman-type filtering.
This article provides a tutorial-style overview of design approaches for incorporating AI in aiding KF-type algorithms.
arXiv Detail & Related papers (2024-10-16T06:47:53Z) - A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions [66.40362209055023]
This paper aims to provide a survey of current models for cognitive diagnosis, with more attention on new developments using machine learning-based methods.
By comparing the model structures, parameter estimation algorithms, model evaluation methods and applications, we provide a relatively comprehensive review of the recent trends in cognitive diagnosis models.
arXiv Detail & Related papers (2024-07-07T18:02:00Z) - Unified Explanations in Machine Learning Models: A Perturbation Approach [0.0]
Inconsistencies between XAI and modeling techniques can have the undesirable effect of casting doubt upon the efficacy of these explainability approaches.
We propose a systematic, perturbation-based analysis against a popular, model-agnostic method in XAI, SHapley Additive exPlanations (Shap)
We devise algorithms to generate relative feature importance in settings of dynamic inference amongst a suite of popular machine learning and deep learning methods, and metrics that allow us to quantify how well explanations generated under the static case hold.
arXiv Detail & Related papers (2024-05-30T16:04:35Z) - An interpretable deep learning method for bearing fault diagnosis [12.069344716912843]
We utilize a convolutional neural network (CNN) with Gradient-weighted Class Activation Mapping (Grad-CAM) visualizations to form an interpretable Deep Learning (DL) method for classifying bearing faults.
During the model evaluation process, the proposed approach retrieves prediction basis samples from the health library according to the similarity of the feature importance.
arXiv Detail & Related papers (2023-08-20T15:22:08Z) - Beyond Convergence: Identifiability of Machine Learning and Deep
Learning Models [0.0]
We investigate the notion of model parameter identifiability through a case study focused on parameter estimation from motion sensor data.
We employ a deep neural network to estimate subject-wise parameters, including mass, stiffness, and equilibrium leg length.
The results show that while certain parameters can be identified from the observation data, others remain unidentifiable.
arXiv Detail & Related papers (2023-07-21T03:40:53Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Using Shape Metrics to Describe 2D Data Points [0.0]
We propose to use shape metrics to describe 2D data to help make analyses more explainable and interpretable.
This is particularly important in applications in the medical community where the right to explainability' is crucial.
arXiv Detail & Related papers (2022-01-27T23:28:42Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Recovering Quantitative Models of Human Information Processing with
Differentiable Architecture Search [0.3384279376065155]
We introduce an open-source pipeline for the automated construction of quantitative models.
We find that these methods are capable of recovering basic quantitative motifs from models of psychophysics, learning and decision making.
arXiv Detail & Related papers (2021-03-25T16:00:23Z) - A User's Guide to Calibrating Robotics Simulators [54.85241102329546]
This paper proposes a set of benchmarks and a framework for the study of various algorithms aimed to transfer models and policies learnt in simulation to the real world.
We conduct experiments on a wide range of well known simulated environments to characterize and offer insights into the performance of different algorithms.
Our analysis can be useful for practitioners working in this area and can help make informed choices about the behavior and main properties of sim-to-real algorithms.
arXiv Detail & Related papers (2020-11-17T22:24:26Z) - Benchmarking off-the-shelf statistical shape modeling tools in clinical
applications [53.47202621511081]
We systematically assess the outcome of widely used, state-of-the-art SSM tools.
We propose validation frameworks for anatomical landmark/measurement inference and lesion screening.
ShapeWorks and Deformetrica shape models are found to capture clinically relevant population-level variability.
arXiv Detail & Related papers (2020-09-07T03:51:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.