A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions
- URL: http://arxiv.org/abs/2407.05458v1
- Date: Sun, 7 Jul 2024 18:02:00 GMT
- Title: A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions
- Authors: Fei Wang, Weibo Gao, Qi Liu, Jiatong Li, Guanhao Zhao, Zheng Zhang, Zhenya Huang, Mengxiao Zhu, Shijin Wang, Wei Tong, Enhong Chen,
- Abstract summary: This paper aims to provide a survey of current models for cognitive diagnosis, with more attention on new developments using machine learning-based methods.
By comparing the model structures, parameter estimation algorithms, model evaluation methods and applications, we provide a relatively comprehensive review of the recent trends in cognitive diagnosis models.
- Score: 66.40362209055023
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cognitive diagnosis has been developed for decades as an effective measurement tool to evaluate human cognitive status such as ability level and knowledge mastery. It has been applied to a wide range of fields including education, sport, psychological diagnosis, etc. By providing better awareness of cognitive status, it can serve as the basis for personalized services such as well-designed medical treatment, teaching strategy and vocational training. This paper aims to provide a survey of current models for cognitive diagnosis, with more attention on new developments using machine learning-based methods. By comparing the model structures, parameter estimation algorithms, model evaluation methods and applications, we provide a relatively comprehensive review of the recent trends in cognitive diagnosis models. Further, we discuss future directions that are worthy of exploration. In addition, we release two Python libraries: EduData for easy access to some relevant public datasets we have collected, and EduCDM that implements popular CDMs to facilitate both applications and research purposes.
Related papers
- DREAMS: A python framework to train deep learning models with model card reporting for medical and health applications [7.2934799091933815]
We introduce a comprehensive deep learning framework tailored for EEG data processing, model training and report generation.
While constructed in way to be adapted and developed further by AI developers, it enables to report, through model cards, the outcome and specific information of use for both developers and clinicians.
arXiv Detail & Related papers (2024-09-26T13:12:13Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Automated Radiology Report Generation: A Review of Recent Advances [5.965255286239531]
Recent technological advances in artificial intelligence have demonstrated great potential for automatic radiology report generation.
Recent advances in artificial intelligence have demonstrated great potential for automatic radiology report generation.
arXiv Detail & Related papers (2024-05-17T15:06:08Z) - Out-of-distribution Detection in Medical Image Analysis: A survey [12.778646136644399]
Computer-aided diagnostics has benefited from the development of deep learning-based computer vision techniques.
Traditional supervised deep learning methods assume that the test sample is drawn from the identical distribution as the training data.
It is possible to encounter out-of-distribution samples in real-world clinical scenarios, which may cause silent failure in deep learning-based medical image analysis tasks.
arXiv Detail & Related papers (2024-04-28T18:51:32Z) - Unified Uncertainty Estimation for Cognitive Diagnosis Models [70.46998436898205]
We propose a unified uncertainty estimation approach for a wide range of cognitive diagnosis models.
We decompose the uncertainty of diagnostic parameters into data aspect and model aspect.
Our method is effective and can provide useful insights into the uncertainty of cognitive diagnosis.
arXiv Detail & Related papers (2024-03-09T13:48:20Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics.
Deep learning has demonstrated its superiority in various applications, including healthcare.
arXiv Detail & Related papers (2024-02-02T00:31:01Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - UIILD: A Unified Interpretable Intelligent Learning Diagnosis Framework
for Intelligent Tutoring Systems [8.354034992258482]
The proposed unified interpretable intelligent learning diagnosis (UIILD) framework benefits from the powerful representation learning ability of deep learning and the interpretability of psychometrics.
Within the proposed framework, this paper presents a two-channel learning diagnosis mechanism LDM-ID as well as a three-channel learning diagnosis mechanism LDM-HMI.
arXiv Detail & Related papers (2022-07-07T07:04:22Z) - Explainable Deep Learning in Healthcare: A Methodological Survey from an
Attribution View [36.025217954247125]
We introduce the methods for interpretability in depth and comprehensively as a methodological reference for future researchers or clinical practitioners.
We discuss how these methods have been adapted and applied to healthcare problems and how they can help physicians better understand these data-driven technologies.
arXiv Detail & Related papers (2021-12-05T17:12:53Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
We propose a novel method for Learning Binary Semantic Embedding (LBSE)
Based on the efficient and effective embedding, classification and retrieval are performed to provide interpretable computer-assisted diagnosis for histology images.
Experiments conducted on three benchmark datasets validate the superiority of LBSE under various scenarios.
arXiv Detail & Related papers (2020-10-07T08:36:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.