Emergence of Anyons on the Two-Sphere in Molecular Impurities
- URL: http://arxiv.org/abs/2108.06966v1
- Date: Mon, 16 Aug 2021 08:39:13 GMT
- Title: Emergence of Anyons on the Two-Sphere in Molecular Impurities
- Authors: Morris Brooks, Mikhail Lemeshko, Douglas Lundholm, Enderalp Yakaboylu
- Abstract summary: We show that the lowest spectrum of two linear molecules immersed in superfluid helium corresponds to the spectrum of two anyons on the sphere.
We develop the formalism within the framework of the recently experimentally observed angulon quasiparticle.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently it was shown that anyons on the two-sphere naturally arise from a
system of molecular impurities exchanging angular momentum with a many-particle
bath (Phys. Rev. Lett. 126, 015301 (2021)). Here we further advance this
approach and rigorously demonstrate that in the experimentally realized regime
the lowest spectrum of two linear molecules immersed in superfluid helium
corresponds to the spectrum of two anyons on the sphere. We develop the
formalism within the framework of the recently experimentally observed angulon
quasiparticle.
Related papers
- The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Spectral structure and doublon dissociation in the two-particle
non-Hermitian Hubbard model [0.0]
We consider a non-Hermitian Hubbard model, where the single-particle hopping amplitudes on the lattice are not reciprocal.
The analysis unveils some interesting spectral and dynamical effects of purely non-Hermitian nature.
arXiv Detail & Related papers (2023-08-08T18:12:15Z) - Dynamics of molecular rotors in bulk superfluid helium [68.8204255655161]
We report on the experimental study of the laser-induced rotation of helium dimers inside the superfluid $4mathrmHe$ bath at variable temperature.
The observed temperature dependence suggests a non-equilibrium evolution of the quantum bath, accompanied by the emission of the wave of second sound.
arXiv Detail & Related papers (2023-04-08T01:22:19Z) - Loosely Bound Few-Body States in a Spin-1 Gas with Near-Degenerate
Continua [0.0]
A distinguishing feature of ultracold collisions of bosonic lithium atoms is the presence of two near-degenerate two-body continua.
The influence of such a near-degeneracy on the few-body physics is investigated within the framework of a minimal model.
arXiv Detail & Related papers (2023-01-19T14:34:03Z) - Fermion production at the boundary of an expanding universe: a cold-atom
gravitational analogue [68.8204255655161]
We study the phenomenon of cosmological particle production of Dirac fermions in a Friedman-Robertson-Walker spacetime.
We present a scheme for the quantum simulation of this gravitational analogue by means of ultra-cold atoms in Raman optical lattices.
arXiv Detail & Related papers (2022-12-02T18:28:23Z) - Excited rotational states of molecules in a superfluid [0.0]
We explore excited rotational states of molecules embedded in helium nanodroplets.
Laser-induced nonadiabatic molecular alignment is employed to measure spectral lines for rotational states.
We show that the effect of the surrounding superfluid on molecular rotation can be rationalized by a single quantity.
arXiv Detail & Related papers (2021-06-30T15:59:18Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z) - Molecular Impurities as a Realization of Anyons on the Two-Sphere [0.0]
We show that the lowest-energy spectrum of two linear bosonic/fermionic molecules immersed in a quantum many-particle environment can coincide with the anyonic spectrum on the sphere.
This paves the way towards experimental realization of anyons on the sphere using molecular impurities.
arXiv Detail & Related papers (2020-09-13T07:59:44Z) - Plasmonic Purcell Effect in Organic Molecules [0.0]
We investigate the Purcell effect experienced by an organic molecule placed in the vicinity of a plasmonic nanostructure.
Our theoretical approach allows for a realistic description of the continua of both molecular vibrations and optical nanocavity modes.
By disentangling the molecule coupling to radiative and non-radiative plasmonic modes, we also shed light into the quenching phenomenology taking place in the system.
arXiv Detail & Related papers (2020-05-12T10:07:26Z) - Bulk detection of time-dependent topological transitions in quenched
chiral models [48.7576911714538]
We show that the winding number of the Hamiltonian eigenstates can be read-out by measuring the mean chiral displacement of a single-particle wavefunction.
This implies that the mean chiral displacement can detect the winding number even when the underlying Hamiltonian is quenched between different topological phases.
arXiv Detail & Related papers (2020-01-16T17:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.