Benchmarking Machine Learning Algorithms for Adaptive Quantum Phase
Estimation with Noisy Intermediate-Scale Quantum Sensors
- URL: http://arxiv.org/abs/2108.06978v2
- Date: Tue, 17 Aug 2021 09:37:57 GMT
- Title: Benchmarking Machine Learning Algorithms for Adaptive Quantum Phase
Estimation with Noisy Intermediate-Scale Quantum Sensors
- Authors: Nelson Filipe Costa, Yasser Omar, Aidar Sultanov and Gheorghe Sorin
Paraoanu
- Abstract summary: We show that adaptive methods can be used to enhance the precision of quantum phase estimation when noisy non-entangled qubits are used as sensors.
We benchmark these schemes with respect to scenarios that include Gaussian and Random Telegraph fluctuations.
We discuss their robustness against noise in connection with real experimental setups such as Mach-Zehnder interferometry with optical photons and Ramsey interferometry in trapped ions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum phase estimation is a paradigmatic problem in quantum sensing
andmetrology. Here we show that adaptive methods based on classical
machinelearning algorithms can be used to enhance the precision of quantum
phase estimation when noisy non-entangled qubits are used as sensors. We employ
the Differential Evolution (DE) and Particle Swarm Optimization (PSO)
algorithms to this task and we identify the optimal feedback policies which
minimize the Holevo variance. We benchmark these schemes with respect to
scenarios that include Gaussian and Random Telegraph fluctuations as well as
reduced Ramsey-fringe visibility due to decoherence. We discuss their
robustness against noise in connection with real experimental setups such as
Mach-Zehnder interferometry with optical photons and Ramsey interferometry in
trapped ions,superconducting qubits and nitrogen-vacancy (NV) centers in
diamond.
Related papers
- Variational quantum algorithm for enhanced continuous variable optical
phase sensing [0.0]
Variational quantum algorithms (VQAs) are hybrid quantum-classical approaches used for tackling a wide range of problems on noisy quantum devices.
We implement a variational algorithm designed for optimized parameter estimation on a continuous variable platform based on squeezed light.
arXiv Detail & Related papers (2023-12-21T14:11:05Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
We derive an approximate message-passing algorithm (AMP) for the inhomogeneous problem.
We identify in particular the existence of a statistical-to-computational gap where known algorithms require a signal-to-noise ratio bigger than the information-theoretic threshold to perform better than random.
arXiv Detail & Related papers (2023-02-13T19:57:17Z) - Variational waveguide QED simulators [58.720142291102135]
Waveguide QED simulators are made by quantum emitters interacting with one-dimensional photonic band-gap materials.
Here, we demonstrate how these interactions can be a resource to develop more efficient variational quantum algorithms.
arXiv Detail & Related papers (2023-02-03T18:55:08Z) - Optimizing one-axis twists for variational Bayesian quantum metrology [0.0]
In particular, qubit phase estimation, or rotation sensing, appears as a ubiquitous problem with applications to electric field sensing, magnetometry, atomic clocks, and gyroscopes.
We propose a new family of parametrized encoding and decoding protocols called arbitrary-axis twist ansatzes.
We show that it can lead to a substantial reduction in the number of one-axis twists needed to achieve a target estimation error.
arXiv Detail & Related papers (2022-12-23T16:45:15Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Robust Quantum Control using Hybrid Pulse Engineering [0.0]
gradient-based optimization algorithms are limited by their sensitivity to the initial guess.
Our numerical analysis confirms its superior convergence rate.
We describe a general method to construct noise-resilient quantum controls by incorporating noisy fields.
arXiv Detail & Related papers (2021-12-02T14:29:42Z) - Coherent Ising Machines with Optical Error Correction Circuits [0.0]
We propose a network of open-dissipative quantum oscillators with optical error correction circuits.
The quantum theory of the proposed CIMs can be used as a parametric algorithm and efficiently implemented on existing digital platforms.
We find that the proposed optical implementations have the potential for low energy consumption when implemented optically on a thin film LiNbO3 platform.
arXiv Detail & Related papers (2021-08-16T22:53:40Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Towards solving the BCS Hamiltonian gap in Near-Term Quantum Computers [0.0]
We obtain the gap of a BCS Hamiltonian using a NISQ framework.
We show how to approximate the gap within one standard deviation, even with the presence of noise.
arXiv Detail & Related papers (2021-05-31T13:01:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.