Provably Robust Training of Quantum Circuit Classifiers Against Parameter Noise
- URL: http://arxiv.org/abs/2505.18478v1
- Date: Sat, 24 May 2025 02:51:34 GMT
- Title: Provably Robust Training of Quantum Circuit Classifiers Against Parameter Noise
- Authors: Lucas Tecot, Di Luo, Cho-Jui Hsieh,
- Abstract summary: Noise remains a major obstacle to achieving reliable quantum algorithms.<n>We present a provably noise-resilient training theory and algorithm to enhance the robustness of parameterized quantum circuit classifiers.
- Score: 49.97673761305336
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advancements in quantum computing have spurred significant interest in harnessing its potential for speedups over classical systems. However, noise remains a major obstacle to achieving reliable quantum algorithms. In this work, we present a provably noise-resilient training theory and algorithm to enhance the robustness of parameterized quantum circuit classifiers. Our method, with a natural connection to Evolutionary Strategies, guarantees resilience to parameter noise with minimal adjustments to commonly used optimization algorithms. Our approach is function-agnostic and adaptable to various quantum circuits, successfully demonstrated in quantum phase classification tasks. By developing provably guaranteed optimization theory with quantum circuits, our work opens new avenues for practical, robust applications of near-term quantum computers.
Related papers
- VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - Circuit structure-preserving error mitigation for High-Fidelity Quantum Simulations [5.186385511113478]
We present a circuit structure-preserving error mitigation framework for parameterized quantum circuits.<n>A key advantage of our approach lies in its ability to retain the original circuit architecture while effectively characterizing and mitigating gate errors.<n>Our strategy offers a practical solution for addressing gate-induced errors and significantly broadens the scope of feasible quantum simulations on current quantum hardware.
arXiv Detail & Related papers (2025-05-22T18:00:03Z) - Diffusion-Inspired Quantum Noise Mitigation in Parameterized Quantum Circuits [10.073911279652918]
We study the relationship between the quantum noise and the diffusion model.<n>We propose a novel diffusion-inspired learning approach to mitigate the quantum noise in the PQCs.
arXiv Detail & Related papers (2024-06-02T19:35:38Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - On-the-fly Tailoring towards a Rational Ansatz Design for Digital
Quantum Simulations [0.0]
It is imperative to develop low depth quantum circuits that are physically realizable in quantum devices.
We develop a disentangled ansatz construction protocol that can dynamically tailor an optimal ansatz.
The construction of the ansatz may potentially be performed in parallel quantum architecture through energy sorting and operator commutativity prescreening.
arXiv Detail & Related papers (2023-02-07T11:22:01Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Policy Gradient based Quantum Approximate Optimization Algorithm [2.5614220901453333]
We show that policy-gradient-based reinforcement learning algorithms are well suited for optimizing the variational parameters of QAOA in a noise-robust fashion.
We analyze the performance of the algorithm for quantum state transfer problems in single- and multi-qubit systems.
arXiv Detail & Related papers (2020-02-04T00:46:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.