Structure-Aware Feature Generation for Zero-Shot Learning
- URL: http://arxiv.org/abs/2108.07032v1
- Date: Mon, 16 Aug 2021 11:52:08 GMT
- Title: Structure-Aware Feature Generation for Zero-Shot Learning
- Authors: Lianbo Zhang, Shaoli Huang, Xinchao Wang, Wei Liu, Dacheng Tao
- Abstract summary: We introduce a novel structure-aware feature generation scheme, termed as SA-GAN, to account for the topological structure in learning both the latent space and the generative networks.
Our method significantly enhances the generalization capability on unseen-classes and consequently improve the classification performance.
- Score: 108.76968151682621
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Zero-Shot Learning (ZSL) targets at recognizing unseen categories by
leveraging auxiliary information, such as attribute embedding. Despite the
encouraging results achieved, prior ZSL approaches focus on improving the
discriminant power of seen-class features, yet have largely overlooked the
geometric structure of the samples and the prototypes. The subsequent
attribute-based generative adversarial network (GAN), as a result, also
neglects the topological information in sample generation and further yields
inferior performances in classifying the visual features of unseen classes. In
this paper, we introduce a novel structure-aware feature generation scheme,
termed as SA-GAN, to explicitly account for the topological structure in
learning both the latent space and the generative networks. Specifically, we
introduce a constraint loss to preserve the initial geometric structure when
learning a discriminative latent space, and carry out our GAN training with
additional supervising signals from a structure-aware discriminator and a
reconstruction module. The former supervision distinguishes fake and real
samples based on their affinity to class prototypes, while the latter aims to
reconstruct the original feature space from the generated latent space. This
topology-preserving mechanism enables our method to significantly enhance the
generalization capability on unseen-classes and consequently improve the
classification performance. Experiments on four benchmarks demonstrate that the
proposed approach consistently outperforms the state of the art. Our code can
be found in the supplementary material and will also be made publicly
available.
Related papers
- A Bayesian Unification of Self-Supervised Clustering and Energy-Based
Models [11.007541337967027]
We perform a Bayesian analysis of state-of-the-art self-supervised learning objectives.
We show that our objective function allows to outperform existing self-supervised learning strategies.
We also demonstrate that GEDI can be integrated into a neuro-symbolic framework.
arXiv Detail & Related papers (2023-12-30T04:46:16Z) - Instance Adaptive Prototypical Contrastive Embedding for Generalized
Zero Shot Learning [11.720039414872296]
Generalized zero-shot learning aims to classify samples from seen and unseen labels, assuming unseen labels are not accessible during training.
Recent advancements in GZSL have been expedited by incorporating contrastive-learning-based embedding in generative networks.
arXiv Detail & Related papers (2023-09-13T14:26:03Z) - Feature construction using explanations of individual predictions [0.0]
We propose a novel approach for reducing the search space based on aggregation of instance-based explanations of predictive models.
We empirically show that reducing the search to these groups significantly reduces the time of feature construction.
We show significant improvements in classification accuracy for several classifiers and demonstrate the feasibility of the proposed feature construction even for large datasets.
arXiv Detail & Related papers (2023-01-23T18:59:01Z) - Class-Specific Semantic Reconstruction for Open Set Recognition [101.24781422480406]
Open set recognition enables deep neural networks (DNNs) to identify samples of unknown classes.
We propose a novel method, called Class-Specific Semantic Reconstruction (CSSR), that integrates the power of auto-encoder (AE) and prototype learning.
Results of experiments conducted on multiple datasets show that the proposed method achieves outstanding performance in both close and open set recognition.
arXiv Detail & Related papers (2022-07-05T16:25:34Z) - GSMFlow: Generation Shifts Mitigating Flow for Generalized Zero-Shot
Learning [55.79997930181418]
Generalized Zero-Shot Learning aims to recognize images from both the seen and unseen classes by transferring semantic knowledge from seen to unseen classes.
It is a promising solution to take the advantage of generative models to hallucinate realistic unseen samples based on the knowledge learned from the seen classes.
We propose a novel flow-based generative framework that consists of multiple conditional affine coupling layers for learning unseen data generation.
arXiv Detail & Related papers (2022-07-05T04:04:37Z) - Self-Supervised Class Incremental Learning [51.62542103481908]
Existing Class Incremental Learning (CIL) methods are based on a supervised classification framework sensitive to data labels.
When updating them based on the new class data, they suffer from catastrophic forgetting: the model cannot discern old class data clearly from the new.
In this paper, we explore the performance of Self-Supervised representation learning in Class Incremental Learning (SSCIL) for the first time.
arXiv Detail & Related papers (2021-11-18T06:58:19Z) - Unveiling the Potential of Structure-Preserving for Weakly Supervised
Object Localization [71.79436685992128]
We propose a two-stage approach, termed structure-preserving activation (SPA), towards fully leveraging the structure information incorporated in convolutional features for WSOL.
In the first stage, a restricted activation module (RAM) is designed to alleviate the structure-missing issue caused by the classification network.
In the second stage, we propose a post-process approach, termed self-correlation map generating (SCG) module to obtain structure-preserving localization maps.
arXiv Detail & Related papers (2021-03-08T03:04:14Z) - Closed-Form Factorization of Latent Semantics in GANs [65.42778970898534]
A rich set of interpretable dimensions has been shown to emerge in the latent space of the Generative Adversarial Networks (GANs) trained for synthesizing images.
In this work, we examine the internal representation learned by GANs to reveal the underlying variation factors in an unsupervised manner.
We propose a closed-form factorization algorithm for latent semantic discovery by directly decomposing the pre-trained weights.
arXiv Detail & Related papers (2020-07-13T18:05:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.