Instance Adaptive Prototypical Contrastive Embedding for Generalized
Zero Shot Learning
- URL: http://arxiv.org/abs/2309.06987v2
- Date: Thu, 14 Sep 2023 06:40:13 GMT
- Title: Instance Adaptive Prototypical Contrastive Embedding for Generalized
Zero Shot Learning
- Authors: Riti Paul, Sahil Vora and Baoxin Li
- Abstract summary: Generalized zero-shot learning aims to classify samples from seen and unseen labels, assuming unseen labels are not accessible during training.
Recent advancements in GZSL have been expedited by incorporating contrastive-learning-based embedding in generative networks.
- Score: 11.720039414872296
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generalized zero-shot learning(GZSL) aims to classify samples from seen and
unseen labels, assuming unseen labels are not accessible during training.
Recent advancements in GZSL have been expedited by incorporating
contrastive-learning-based (instance-based) embedding in generative networks
and leveraging the semantic relationship between data points. However, existing
embedding architectures suffer from two limitations: (1) limited
discriminability of synthetic features' embedding without considering
fine-grained cluster structures; (2) inflexible optimization due to restricted
scaling mechanisms on existing contrastive embedding networks, leading to
overlapped representations in the embedding space. To enhance the quality of
representations in the embedding space, as mentioned in (1), we propose a
margin-based prototypical contrastive learning embedding network that reaps the
benefits of prototype-data (cluster quality enhancement) and implicit data-data
(fine-grained representations) interaction while providing substantial cluster
supervision to the embedding network and the generator. To tackle (2), we
propose an instance adaptive contrastive loss that leads to generalized
representations for unseen labels with increased inter-class margin. Through
comprehensive experimental evaluation, we show that our method can outperform
the current state-of-the-art on three benchmark datasets. Our approach also
consistently achieves the best unseen performance in the GZSL setting.
Related papers
- GCC: Generative Calibration Clustering [55.44944397168619]
We propose a novel Generative Clustering (GCC) method to incorporate feature learning and augmentation into clustering procedure.
First, we develop a discrimirative feature alignment mechanism to discover intrinsic relationship across real and generated samples.
Second, we design a self-supervised metric learning to generate more reliable cluster assignment.
arXiv Detail & Related papers (2024-04-14T01:51:11Z) - Generalized Category Discovery with Clustering Assignment Consistency [56.92546133591019]
Generalized category discovery (GCD) is a recently proposed open-world task.
We propose a co-training-based framework that encourages clustering consistency.
Our method achieves state-of-the-art performance on three generic benchmarks and three fine-grained visual recognition datasets.
arXiv Detail & Related papers (2023-10-30T00:32:47Z) - Rethinking Prototypical Contrastive Learning through Alignment,
Uniformity and Correlation [24.794022951873156]
We propose to learn Prototypical representation through Alignment, Uniformity and Correlation (PAUC)
Specifically, the ordinary ProtoNCE loss is revised with: (1) an alignment loss that pulls embeddings from positive prototypes together; (2) a loss that distributes the prototypical level features uniformly; (3) a correlation loss that increases the diversity and discriminability between prototypical level features.
arXiv Detail & Related papers (2022-10-18T22:33:12Z) - GSMFlow: Generation Shifts Mitigating Flow for Generalized Zero-Shot
Learning [55.79997930181418]
Generalized Zero-Shot Learning aims to recognize images from both the seen and unseen classes by transferring semantic knowledge from seen to unseen classes.
It is a promising solution to take the advantage of generative models to hallucinate realistic unseen samples based on the knowledge learned from the seen classes.
We propose a novel flow-based generative framework that consists of multiple conditional affine coupling layers for learning unseen data generation.
arXiv Detail & Related papers (2022-07-05T04:04:37Z) - Learning Aligned Cross-Modal Representation for Generalized Zero-Shot
Classification [17.177622259867515]
We propose an innovative autoencoder network by learning Aligned Cross-Modal Representations (dubbed ACMR) for Generalized Zero-Shot Classification (GZSC)
Specifically, we propose a novel Vision-Semantic Alignment (VSA) method to strengthen the alignment of cross-modal latent features on the latent subspaces guided by a learned classifier.
In addition, we propose a novel Information Enhancement Module (IEM) to reduce the possibility of latent variables collapse meanwhile encouraging the discriminative ability of latent variables.
arXiv Detail & Related papers (2021-12-24T03:35:37Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Guided Point Contrastive Learning for Semi-supervised Point Cloud
Semantic Segmentation [90.2445084743881]
We present a method for semi-supervised point cloud semantic segmentation to adopt unlabeled point clouds in training to boost the model performance.
Inspired by the recent contrastive loss in self-supervised tasks, we propose the guided point contrastive loss to enhance the feature representation and model generalization ability.
arXiv Detail & Related papers (2021-10-15T16:38:54Z) - Neighborhood Contrastive Learning for Novel Class Discovery [79.14767688903028]
We build a new framework, named Neighborhood Contrastive Learning, to learn discriminative representations that are important to clustering performance.
We experimentally demonstrate that these two ingredients significantly contribute to clustering performance and lead our model to outperform state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2021-06-20T17:34:55Z) - Unsupervised Domain Adaptation in Semantic Segmentation via Orthogonal
and Clustered Embeddings [25.137859989323537]
We propose an effective Unsupervised Domain Adaptation (UDA) strategy, based on a feature clustering method.
We introduce two novel learning objectives to enhance the discriminative clustering performance.
arXiv Detail & Related papers (2020-11-25T10:06:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.