論文の概要: PnP-3D: A Plug-and-Play for 3D Point Clouds
- arxiv url: http://arxiv.org/abs/2108.07378v1
- Date: Mon, 16 Aug 2021 23:59:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-18 13:22:27.490793
- Title: PnP-3D: A Plug-and-Play for 3D Point Clouds
- Title(参考訳): pnp-3d:3dポイントクラウドのためのプラグアンドプレイ
- Authors: Shi Qiu, Saeed Anwar, Nick Barnes
- Abstract要約: 本稿では,既存ネットワークのポイントクラウドデータ解析における有効性を改善するために,プラグイン・アンド・プレイモジュール -3D を提案する。
アプローチを徹底的に評価するために,3つの標準的なクラウド分析タスクについて実験を行った。
本研究は,最先端の成果の達成に加えて,我々のアプローチのメリットを実証する包括的研究を提案する。
- 参考スコア(独自算出の注目度): 38.05362492645094
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the help of the deep learning paradigm, many point cloud networks have
been invented for visual analysis. However, there is great potential for
development of these networks since the given information of point cloud data
has not been fully exploited. To improve the effectiveness of existing networks
in analyzing point cloud data, we propose a plug-and-play module, PnP-3D,
aiming to refine the fundamental point cloud feature representations by
involving more local context and global bilinear response from explicit 3D
space and implicit feature space. To thoroughly evaluate our approach, we
conduct experiments on three standard point cloud analysis tasks, including
classification, semantic segmentation, and object detection, where we select
three state-of-the-art networks from each task for evaluation. Serving as a
plug-and-play module, PnP-3D can significantly boost the performances of
established networks. In addition to achieving state-of-the-art results on four
widely used point cloud benchmarks, we present comprehensive ablation studies
and visualizations to demonstrate our approach's advantages. The code will be
available at https://github.com/ShiQiu0419/pnp-3d.
- Abstract(参考訳): ディープラーニングパラダイムの助けを借りて、視覚分析のために多くのポイントクラウドネットワークが発明された。
しかし、ポイントクラウドデータの所定の情報が十分に活用されていないため、これらのネットワークの開発には大きな可能性がある。
そこで,提案するpnp-3dは,明示的な3次元空間と暗黙的特徴空間から,より局所的な文脈とグローバルバイリニア応答を伴って,基本ポイントクラウドの特徴表現を洗練することを目的としている。
このアプローチを徹底的に評価するために,分類,意味セグメンテーション,オブジェクト検出という3つの標準ポイントクラウド分析タスクについて実験を行い,各タスクから3つの最先端ネットワークを選択し評価した。
pnp-3dはプラグアンドプレイモジュールとして機能し、確立されたネットワークのパフォーマンスを大幅に向上させることができる。
4つの広く使われているpoint cloudベンチマークで最先端の結果を得るとともに、包括的なアブレーション研究と可視化を行い、このアプローチの利点を実証する。
コードはhttps://github.com/ShiQiu0419/pnp-3dで入手できる。
関連論文リスト
- Clustering based Point Cloud Representation Learning for 3D Analysis [80.88995099442374]
本稿では,ポイントクラウド分析のためのクラスタリングに基づく教師付き学習手法を提案する。
現在のデファクトでシーンワイドなトレーニングパラダイムとは異なり、我々のアルゴリズムは点埋め込み空間上でクラス内のクラスタリングを行う。
我々のアルゴリズムは、有名なポイントクラウドセグメンテーションデータセットの顕著な改善を示している。
論文 参考訳(メタデータ) (2023-07-27T03:42:12Z) - Point2Vec for Self-Supervised Representation Learning on Point Clouds [66.53955515020053]
Data2vecをポイントクラウド領域に拡張し、いくつかのダウンストリームタスクで推奨される結果を報告します。
我々は、ポイントクラウド上でData2vecライクな事前トレーニングの可能性を解放するpoint2vecを提案する。
論文 参考訳(メタデータ) (2023-03-29T10:08:29Z) - Nearest Neighbors Meet Deep Neural Networks for Point Cloud Analysis [14.844183458784235]
我々は,空間近傍適応(SN-Adapter)と呼ばれるパラメータの再設計や余分なパラメータを伴わずに,既存のディープニューラルネットワークを強化する方法を提案する。
訓練された3Dネットワーク上に構築された学習符号化機能を利用して,学習データセットの特徴を抽出し,それらを空間知識として要約する。
テストポイントクラウドでは、SN-Adapterは、事前構築された空間プロトタイプからk隣人(k-NN)を検索し、k-NN予測を元の3Dネットワークのプロトタイプと線形補間する。
論文 参考訳(メタデータ) (2023-03-01T17:57:09Z) - Point-Syn2Real: Semi-Supervised Synthetic-to-Real Cross-Domain Learning
for Object Classification in 3D Point Clouds [14.056949618464394]
LiDAR 3Dポイントクラウドデータを用いたオブジェクト分類は、自律運転のような現代的なアプリケーションにとって重要である。
本稿では,ポイントクラウドのマニュアルアノテーションに依存しない半教師付きクロスドメイン学習手法を提案する。
我々は、ポイントクラウド上でのクロスドメイン学習のための新しいベンチマークデータセットであるPoint-Syn2Realを紹介した。
論文 参考訳(メタデータ) (2022-10-31T01:53:51Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
ドメイン適応によるオブジェクトの無傷な特徴を関連付ける新しい3D検出フレームワークを提案する。
我々は,KITTIの3D検出ベンチマークにおいて,精度と速度の両面で最新の性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T16:54:38Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
ポイント・クラウド・コンプリート(Point cloud completion)とは、部分的な3次元ポイント・クラウドから3次元の形状を完成させることである。
そこで我々は,kNNを除去するために,ポイントクラウドをポイント単位に処理する新しいニューラルネットワークを提案する。
提案するフレームワークであるPointAttNはシンプルで簡潔で効果的であり、3次元形状の構造情報を正確に捉えることができる。
論文 参考訳(メタデータ) (2022-03-16T09:20:01Z) - Voint Cloud: Multi-View Point Cloud Representation for 3D Understanding [80.04281842702294]
本稿では,複数の視点から抽出した特徴の集合として,各3次元点を表す多視点クラウド(Voint Cloud)の概念を紹介する。
この新しい3次元Vointクラウド表現は、3Dポイントクラウド表現のコンパクト性と、マルチビュー表現の自然なビュー認識性を組み合わせたものである。
理論的に確立された機能を持つVointニューラルネットワーク(VointNet)をデプロイし,Voint空間の表現を学習する。
論文 参考訳(メタデータ) (2021-11-30T13:08:19Z) - TreeGCN-ED: Encoding Point Cloud using a Tree-Structured Graph Network [24.299931323012757]
この研究は、ポイントクラウドのための堅牢な埋め込みを生成するオートエンコーダベースのフレームワークを提案する。
3Dポイントクラウド補完やシングルイメージベースの3D再構成といったアプリケーションにおいて,提案フレームワークの適用性を示す。
論文 参考訳(メタデータ) (2021-10-07T03:52:56Z) - Point Discriminative Learning for Unsupervised Representation Learning
on 3D Point Clouds [54.31515001741987]
3次元点雲上での教師なし表現学習のための点識別学習法を提案する。
我々は、中間レベルとグローバルレベルの特徴に新しい点識別損失を課すことにより、これを達成した。
提案手法は強力な表現を学習し,新しい最先端性能を実現する。
論文 参考訳(メタデータ) (2021-08-04T15:11:48Z) - Semantic Segmentation for Real Point Cloud Scenes via Bilateral
Augmentation and Adaptive Fusion [38.05362492645094]
現実世界の複雑な環境を直感的に捉えることができますが、3Dデータの生の性質のため、機械認識にとって非常に困難です。
我々は、現実に収集された大規模クラウドデータに対して、重要な視覚的タスク、セマンティックセグメンテーションに集中する。
3つのベンチマークで最先端のネットワークと比較することにより,ネットワークの有効性を実証する。
論文 参考訳(メタデータ) (2021-03-12T04:13:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。