Learning to Cluster via Same-Cluster Queries
- URL: http://arxiv.org/abs/2108.07383v1
- Date: Tue, 17 Aug 2021 00:37:11 GMT
- Title: Learning to Cluster via Same-Cluster Queries
- Authors: Yi Li, Yan Song, Qin Zhang
- Abstract summary: We study the problem of learning to cluster data points using an oracle which can answer same-cluster queries.
We propose two algorithms with provable theoretical guarantees and verify their effectiveness via an extensive set of experiments on both synthetic and real-world data.
- Score: 26.284461833343403
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of learning to cluster data points using an oracle which
can answer same-cluster queries. Different from previous approaches, we do not
assume that the total number of clusters is known at the beginning and do not
require that the true clusters are consistent with a predefined objective
function such as the K-means. These relaxations are critical from the practical
perspective and, meanwhile, make the problem more challenging. We propose two
algorithms with provable theoretical guarantees and verify their effectiveness
via an extensive set of experiments on both synthetic and real-world data.
Related papers
- ABCDE: Application-Based Cluster Diff Evals [49.1574468325115]
It aims to be practical: it allows items to have associated importance values that are application-specific, it is frugal in its use of human judgements when determining which clustering is better, and it can report metrics for arbitrary slices of items.
The approach to measuring the delta in the clustering quality is novel: instead of trying to construct an expensive ground truth up front and evaluating the each clustering with respect to that, ABCDE samples questions for judgement on the basis of the actual diffs between the clusterings.
arXiv Detail & Related papers (2024-07-31T08:29:35Z) - Stable Cluster Discrimination for Deep Clustering [7.175082696240088]
Deep clustering can optimize representations of instances (i.e., representation learning) and explore the inherent data distribution.
The coupled objective implies a trivial solution that all instances collapse to the uniform features.
In this work, we first show that the prevalent discrimination task in supervised learning is unstable for one-stage clustering.
A novel stable cluster discrimination (SeCu) task is proposed and a new hardness-aware clustering criterion can be obtained accordingly.
arXiv Detail & Related papers (2023-11-24T06:43:26Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
Online deep clustering refers to the joint use of a feature extraction network and a clustering model to assign cluster labels to each new data point or batch as it is processed.
While faster and more versatile than offline methods, online clustering can easily reach the collapsed solution where the encoder maps all inputs to the same point and all are put into a single cluster.
We propose a method that does not require data augmentation, and that, differently from existing methods, regularizes the hard assignments.
arXiv Detail & Related papers (2023-03-29T08:23:26Z) - Neural Capacitated Clustering [6.155158115218501]
We propose a new method for the Capacitated Clustering Problem (CCP) that learns a neural network to predict the assignment probabilities of points to cluster centers.
In our experiments on artificial data and two real world datasets our approach outperforms several state-of-the-art mathematical and solvers from the literature.
arXiv Detail & Related papers (2023-02-10T09:33:44Z) - Oracle-guided Contrastive Clustering [28.066047266687058]
Oracle-guided Contrastive Clustering(OCC) is proposed to cluster by interactively making pairwise same-cluster" queries to oracles with distinctive demands.
To the best of our knowledge, it is the first deep framework to perform personalized clustering.
arXiv Detail & Related papers (2022-11-01T12:05:12Z) - Deep Clustering: A Comprehensive Survey [53.387957674512585]
Clustering analysis plays an indispensable role in machine learning and data mining.
Deep clustering, which can learn clustering-friendly representations using deep neural networks, has been broadly applied in a wide range of clustering tasks.
Existing surveys for deep clustering mainly focus on the single-view fields and the network architectures, ignoring the complex application scenarios of clustering.
arXiv Detail & Related papers (2022-10-09T02:31:32Z) - Differentially-Private Clustering of Easy Instances [67.04951703461657]
In differentially private clustering, the goal is to identify $k$ cluster centers without disclosing information on individual data points.
We provide implementable differentially private clustering algorithms that provide utility when the data is "easy"
We propose a framework that allows us to apply non-private clustering algorithms to the easy instances and privately combine the results.
arXiv Detail & Related papers (2021-12-29T08:13:56Z) - Fast and Interpretable Consensus Clustering via Minipatch Learning [0.0]
We develop IMPACC: Interpretable MiniPatch Adaptive Consensus Clustering.
We develop adaptive sampling schemes for observations, which result in both improved reliability and computational savings.
Results show that our approach yields more accurate and interpretable cluster solutions.
arXiv Detail & Related papers (2021-10-05T22:39:28Z) - You Never Cluster Alone [150.94921340034688]
We extend the mainstream contrastive learning paradigm to a cluster-level scheme, where all the data subjected to the same cluster contribute to a unified representation.
We define a set of categorical variables as clustering assignment confidence, which links the instance-level learning track with the cluster-level one.
By reparametrizing the assignment variables, TCC is trained end-to-end, requiring no alternating steps.
arXiv Detail & Related papers (2021-06-03T14:59:59Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - reval: a Python package to determine best clustering solutions with
stability-based relative clustering validation [1.8129328638036126]
reval is a Python package that leverages stability-based relative clustering validation methods to determine best clustering solutions.
This work aims at developing a stability-based method that selects the best clustering solution as the one that replicates, via supervised learning, on unseen subsets of data.
arXiv Detail & Related papers (2020-08-27T10:36:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.