Neural Capacitated Clustering
- URL: http://arxiv.org/abs/2302.05134v2
- Date: Fri, 19 May 2023 08:36:55 GMT
- Title: Neural Capacitated Clustering
- Authors: Jonas K. Falkner and Lars Schmidt-Thieme
- Abstract summary: We propose a new method for the Capacitated Clustering Problem (CCP) that learns a neural network to predict the assignment probabilities of points to cluster centers.
In our experiments on artificial data and two real world datasets our approach outperforms several state-of-the-art mathematical and solvers from the literature.
- Score: 6.155158115218501
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recent work on deep clustering has found new promising methods also for
constrained clustering problems. Their typically pairwise constraints often can
be used to guide the partitioning of the data. Many problems however, feature
cluster-level constraints, e.g. the Capacitated Clustering Problem (CCP), where
each point has a weight and the total weight sum of all points in each cluster
is bounded by a prescribed capacity. In this paper we propose a new method for
the CCP, Neural Capacited Clustering, that learns a neural network to predict
the assignment probabilities of points to cluster centers from a data set of
optimal or near optimal past solutions of other problem instances. During
inference, the resulting scores are then used in an iterative k-means like
procedure to refine the assignment under capacity constraints. In our
experiments on artificial data and two real world datasets our approach
outperforms several state-of-the-art mathematical and heuristic solvers from
the literature. Moreover, we apply our method in the context of a
cluster-first-route-second approach to the Capacitated Vehicle Routing Problem
(CVRP) and show competitive results on the well-known Uchoa benchmark.
Related papers
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - Fuzzy K-Means Clustering without Cluster Centroids [21.256564324236333]
Fuzzy K-Means clustering is a critical technique in unsupervised data analysis.
This paper proposes a novel Fuzzy textitK-Means clustering algorithm that entirely eliminates the reliance on cluster centroids.
arXiv Detail & Related papers (2024-04-07T12:25:03Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
We devise an efficient algorithm that recovers clusters using the observed labels.
We present Instance-Adaptive Clustering (IAC), the first algorithm whose performance matches these lower bounds both in expectation and with high probability.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - A One-shot Framework for Distributed Clustered Learning in Heterogeneous
Environments [54.172993875654015]
The paper proposes a family of communication efficient methods for distributed learning in heterogeneous environments.
One-shot approach, based on local computations at the users and a clustering based aggregation step at the server is shown to provide strong learning guarantees.
For strongly convex problems it is shown that, as long as the number of data points per user is above a threshold, the proposed approach achieves order-optimal mean-squared error rates in terms of the sample size.
arXiv Detail & Related papers (2022-09-22T09:04:10Z) - Gradient Based Clustering [72.15857783681658]
We propose a general approach for distance based clustering, using the gradient of the cost function that measures clustering quality.
The approach is an iterative two step procedure (alternating between cluster assignment and cluster center updates) and is applicable to a wide range of functions.
arXiv Detail & Related papers (2022-02-01T19:31:15Z) - An Exact Algorithm for Semi-supervised Minimum Sum-of-Squares Clustering [0.5801044612920815]
We present a new branch-and-bound algorithm for semi-supervised MSSC.
Background knowledge is incorporated as pairwise must-link and cannot-link constraints.
For the first time, the proposed global optimization algorithm efficiently manages to solve real-world instances up to 800 data points.
arXiv Detail & Related papers (2021-11-30T17:08:53Z) - Clustering to the Fewest Clusters Under Intra-Cluster Dissimilarity
Constraints [0.0]
equiwide clustering relies neither on density nor on a predefined number of expected classes, but on a dissimilarity threshold.
We review and evaluate suitable clustering algorithms to identify trade-offs between the various practical solutions for this clustering problem.
arXiv Detail & Related papers (2021-09-28T12:02:18Z) - Transductive Few-Shot Learning: Clustering is All You Need? [31.21306826132773]
We investigate a general formulation for transive few-shot learning, which integrates prototype-based objectives.
We find that our method yields competitive performances, in term of accuracy and optimization, while scaling up to large problems.
Surprisingly, we find that our general model already achieve competitive performances in comparison to the state-of-the-art learning.
arXiv Detail & Related papers (2021-06-16T16:14:01Z) - (k, l)-Medians Clustering of Trajectories Using Continuous Dynamic Time
Warping [57.316437798033974]
In this work we consider the problem of center-based clustering of trajectories.
We propose the usage of a continuous version of DTW as distance measure, which we call continuous dynamic time warping (CDTW)
We show a practical way to compute a center from a set of trajectories and subsequently iteratively improve it.
arXiv Detail & Related papers (2020-12-01T13:17:27Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - A semi-supervised sparse K-Means algorithm [3.04585143845864]
An unsupervised sparse clustering method can be employed in order to detect the subgroup of features necessary for clustering.
A semi-supervised method can use the labelled data to create constraints and enhance the clustering solution.
We show that the algorithm maintains the high performance of other semi-supervised algorithms and in addition preserves the ability to identify informative from uninformative features.
arXiv Detail & Related papers (2020-03-16T02:05:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.