Investigating a Baseline Of Self Supervised Learning Towards Reducing
Labeling Costs For Image Classification
- URL: http://arxiv.org/abs/2108.07464v1
- Date: Tue, 17 Aug 2021 06:43:05 GMT
- Title: Investigating a Baseline Of Self Supervised Learning Towards Reducing
Labeling Costs For Image Classification
- Authors: Hilal AlQuabeh, Ameera Bawazeer, Abdulateef Alhashmi
- Abstract summary: The study implements the kaggle.com' cats-vs-dogs dataset, Mnist and Fashion-Mnist to investigate the self-supervised learning task.
Results show that the pretext process in the self-supervised learning improves the accuracy around 15% in the downstream classification task.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data labeling in supervised learning is considered an expensive and
infeasible tool in some conditions. The self-supervised learning method is
proposed to tackle the learning effectiveness with fewer labeled data, however,
there is a lack of confidence in the size of labeled data needed to achieve
adequate results. This study aims to draw a baseline on the proportion of the
labeled data that models can appreciate to yield competent accuracy when
compared to training with additional labels. The study implements the
kaggle.com' cats-vs-dogs dataset, Mnist and Fashion-Mnist to investigate the
self-supervised learning task by implementing random rotations augmentation on
the original datasets. To reveal the true effectiveness of the pretext process
in self-supervised learning, the original dataset is divided into smaller
batches, and learning is repeated on each batch with and without the pretext
pre-training. Results show that the pretext process in the self-supervised
learning improves the accuracy around 15% in the downstream classification task
when compared to the plain supervised learning.
Related papers
- Self-Training for Sample-Efficient Active Learning for Text Classification with Pre-Trained Language Models [3.546617486894182]
We introduce HAST, a new and effective self-training strategy, which is evaluated on four text classification benchmarks.
Results show that it outperforms the reproduced self-training approaches and reaches classification results comparable to previous experiments for three out of four datasets.
arXiv Detail & Related papers (2024-06-13T15:06:11Z) - Incremental Self-training for Semi-supervised Learning [56.57057576885672]
IST is simple yet effective and fits existing self-training-based semi-supervised learning methods.
We verify the proposed IST on five datasets and two types of backbone, effectively improving the recognition accuracy and learning speed.
arXiv Detail & Related papers (2024-04-14T05:02:00Z) - Responsible Active Learning via Human-in-the-loop Peer Study [88.01358655203441]
We propose a responsible active learning method, namely Peer Study Learning (PSL), to simultaneously preserve data privacy and improve model stability.
We first introduce a human-in-the-loop teacher-student architecture to isolate unlabelled data from the task learner (teacher) on the cloud-side.
During training, the task learner instructs the light-weight active learner which then provides feedback on the active sampling criterion.
arXiv Detail & Related papers (2022-11-24T13:18:27Z) - Using Self-Supervised Pretext Tasks for Active Learning [7.214674613451605]
We propose a novel active learning approach that utilizes self-supervised pretext tasks and a unique data sampler to select data that are both difficult and representative.
The pretext task learner is trained on the unlabeled set, and the unlabeled data are sorted and grouped into batches by their pretext task losses.
In each iteration, the main task model is used to sample the most uncertain data in a batch to be annotated.
arXiv Detail & Related papers (2022-01-19T07:58:06Z) - Reducing Label Effort: Self-Supervised meets Active Learning [32.4747118398236]
Recent developments in self-training have achieved very impressive results rivaling supervised learning on some datasets.
Our experiments reveal that self-training is remarkably more efficient than active learning at reducing the labeling effort.
The performance gap between active learning trained either with self-training or from scratch diminishes as we approach to the point where almost half of the dataset is labeled.
arXiv Detail & Related papers (2021-08-25T20:04:44Z) - Low-Regret Active learning [64.36270166907788]
We develop an online learning algorithm for identifying unlabeled data points that are most informative for training.
At the core of our work is an efficient algorithm for sleeping experts that is tailored to achieve low regret on predictable (easy) instances.
arXiv Detail & Related papers (2021-04-06T22:53:45Z) - Self-training Improves Pre-training for Natural Language Understanding [63.78927366363178]
We study self-training as another way to leverage unlabeled data through semi-supervised learning.
We introduce SentAugment, a data augmentation method which computes task-specific query embeddings from labeled data.
Our approach leads to scalable and effective self-training with improvements of up to 2.6% on standard text classification benchmarks.
arXiv Detail & Related papers (2020-10-05T17:52:25Z) - Uncertainty-aware Self-training for Text Classification with Few Labels [54.13279574908808]
We study self-training as one of the earliest semi-supervised learning approaches to reduce the annotation bottleneck.
We propose an approach to improve self-training by incorporating uncertainty estimates of the underlying neural network.
We show our methods leveraging only 20-30 labeled samples per class for each task for training and for validation can perform within 3% of fully supervised pre-trained language models.
arXiv Detail & Related papers (2020-06-27T08:13:58Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.