Incremental Self-training for Semi-supervised Learning
- URL: http://arxiv.org/abs/2404.12398v1
- Date: Sun, 14 Apr 2024 05:02:00 GMT
- Title: Incremental Self-training for Semi-supervised Learning
- Authors: Jifeng Guo, Zhulin Liu, Tong Zhang, C. L. Philip Chen,
- Abstract summary: IST is simple yet effective and fits existing self-training-based semi-supervised learning methods.
We verify the proposed IST on five datasets and two types of backbone, effectively improving the recognition accuracy and learning speed.
- Score: 56.57057576885672
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised learning provides a solution to reduce the dependency of machine learning on labeled data. As one of the efficient semi-supervised techniques, self-training (ST) has received increasing attention. Several advancements have emerged to address challenges associated with noisy pseudo-labels. Previous works on self-training acknowledge the importance of unlabeled data but have not delved into their efficient utilization, nor have they paid attention to the problem of high time consumption caused by iterative learning. This paper proposes Incremental Self-training (IST) for semi-supervised learning to fill these gaps. Unlike ST, which processes all data indiscriminately, IST processes data in batches and priority assigns pseudo-labels to unlabeled samples with high certainty. Then, it processes the data around the decision boundary after the model is stabilized, enhancing classifier performance. Our IST is simple yet effective and fits existing self-training-based semi-supervised learning methods. We verify the proposed IST on five datasets and two types of backbone, effectively improving the recognition accuracy and learning speed. Significantly, it outperforms state-of-the-art competitors on three challenging image classification tasks.
Related papers
- Doubly Robust Self-Training [46.168395767948965]
We introduce doubly robust self-training, a novel semi-supervised algorithm.
We demonstrate the superiority of the doubly robust loss over the standard self-training baseline.
arXiv Detail & Related papers (2023-06-01T00:57:16Z) - Iterative Loop Learning Combining Self-Training and Active Learning for
Domain Adaptive Semantic Segmentation [1.827510863075184]
Self-training and active learning have been proposed to alleviate this problem.
This paper proposes an iterative loop learning method combining Self-Training and Active Learning.
arXiv Detail & Related papers (2023-01-31T01:31:43Z) - Boosting Facial Expression Recognition by A Semi-Supervised Progressive
Teacher [54.50747989860957]
We propose a semi-supervised learning algorithm named Progressive Teacher (PT) to utilize reliable FER datasets as well as large-scale unlabeled expression images for effective training.
Experiments on widely-used databases RAF-DB and FERPlus validate the effectiveness of our method, which achieves state-of-the-art performance with accuracy of 89.57% on RAF-DB.
arXiv Detail & Related papers (2022-05-28T07:47:53Z) - ATM: An Uncertainty-aware Active Self-training Framework for
Label-efficient Text Classification [13.881283744970979]
ATM is a new framework that leverage self-training to exploit unlabeled data and is agnostic to the specific AL algorithm.
We demonstrate that ATM outperforms the strongest active learning and self-training baselines and improve the label efficiency by 51.9% on average.
arXiv Detail & Related papers (2021-12-16T11:09:48Z) - Investigating a Baseline Of Self Supervised Learning Towards Reducing
Labeling Costs For Image Classification [0.0]
The study implements the kaggle.com' cats-vs-dogs dataset, Mnist and Fashion-Mnist to investigate the self-supervised learning task.
Results show that the pretext process in the self-supervised learning improves the accuracy around 15% in the downstream classification task.
arXiv Detail & Related papers (2021-08-17T06:43:05Z) - Low-Regret Active learning [64.36270166907788]
We develop an online learning algorithm for identifying unlabeled data points that are most informative for training.
At the core of our work is an efficient algorithm for sleeping experts that is tailored to achieve low regret on predictable (easy) instances.
arXiv Detail & Related papers (2021-04-06T22:53:45Z) - Self-Tuning for Data-Efficient Deep Learning [75.34320911480008]
Self-Tuning is a novel approach to enable data-efficient deep learning.
It unifies the exploration of labeled and unlabeled data and the transfer of a pre-trained model.
It outperforms its SSL and TL counterparts on five tasks by sharp margins.
arXiv Detail & Related papers (2021-02-25T14:56:19Z) - ORDisCo: Effective and Efficient Usage of Incremental Unlabeled Data for
Semi-supervised Continual Learning [52.831894583501395]
Continual learning assumes the incoming data are fully labeled, which might not be applicable in real applications.
We propose deep Online Replay with Discriminator Consistency (ORDisCo) to interdependently learn a classifier with a conditional generative adversarial network (GAN)
We show ORDisCo achieves significant performance improvement on various semi-supervised learning benchmark datasets for SSCL.
arXiv Detail & Related papers (2021-01-02T09:04:14Z) - Boosting the Performance of Semi-Supervised Learning with Unsupervised
Clustering [10.033658645311188]
We show that ignoring labels altogether for whole epochs intermittently during training can significantly improve performance in the small sample regime.
We demonstrate our method's efficacy in boosting several state-of-the-art SSL algorithms.
arXiv Detail & Related papers (2020-12-01T14:19:14Z) - Uncertainty-aware Self-training for Text Classification with Few Labels [54.13279574908808]
We study self-training as one of the earliest semi-supervised learning approaches to reduce the annotation bottleneck.
We propose an approach to improve self-training by incorporating uncertainty estimates of the underlying neural network.
We show our methods leveraging only 20-30 labeled samples per class for each task for training and for validation can perform within 3% of fully supervised pre-trained language models.
arXiv Detail & Related papers (2020-06-27T08:13:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.