Transferring Knowledge with Attention Distillation for Multi-Domain
Image-to-Image Translation
- URL: http://arxiv.org/abs/2108.07466v1
- Date: Tue, 17 Aug 2021 06:47:04 GMT
- Title: Transferring Knowledge with Attention Distillation for Multi-Domain
Image-to-Image Translation
- Authors: Runze Li, Tomaso Fontanini, Luca Donati, Andrea Prati, Bir Bhanu
- Abstract summary: We show how gradient-based attentions can be used as knowledge to be conveyed in a teacher-student paradigm for image-to-image translation tasks.
It is also demonstrated how "pseudo"-attentions can also be employed during training when teacher and student networks are trained on different domains.
- Score: 28.272982411879845
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Gradient-based attention modeling has been used widely as a way to visualize
and understand convolutional neural networks. However, exploiting these visual
explanations during the training of generative adversarial networks (GANs) is
an unexplored area in computer vision research. Indeed, we argue that this kind
of information can be used to influence GANs training in a positive way. For
this reason, in this paper, it is shown how gradient based attentions can be
used as knowledge to be conveyed in a teacher-student paradigm for multi-domain
image-to-image translation tasks in order to improve the results of the student
architecture. Further, it is demonstrated how "pseudo"-attentions can also be
employed during training when teacher and student networks are trained on
different domains which share some similarities. The approach is validated on
multi-domain facial attributes transfer and human expression synthesis showing
both qualitative and quantitative results.
Related papers
- Efficient Visualization of Neural Networks with Generative Models and Adversarial Perturbations [0.0]
This paper presents a novel approach for deep visualization via a generative network, offering an improvement over existing methods.
Our model simplifies the architecture by reducing the number of networks used, requiring only a generator and a discriminator.
Our model requires less prior training knowledge and uses a non-adversarial training process, where the discriminator acts as a guide.
arXiv Detail & Related papers (2024-09-20T14:59:25Z) - Pre-processing and Compression: Understanding Hidden Representation Refinement Across Imaging Domains via Intrinsic Dimension [1.7495213911983414]
We show that medical image models peak in representation ID earlier in the network.
We also find a strong correlation of this peak representation ID with the ID of the data in its input space.
arXiv Detail & Related papers (2024-08-15T18:54:31Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
We propose a domain transfer approach based on conditional invertible neural networks (cINNs)
Our method inherently guarantees cycle consistency through its invertible architecture, and network training can efficiently be conducted with maximum likelihood.
Our method enables the generation of realistic spectral data and outperforms the state of the art on two downstream classification tasks.
arXiv Detail & Related papers (2023-03-17T18:00:27Z) - A domain adaptive deep learning solution for scanpath prediction of
paintings [66.46953851227454]
This paper focuses on the eye-movement analysis of viewers during the visual experience of a certain number of paintings.
We introduce a new approach to predicting human visual attention, which impacts several cognitive functions for humans.
The proposed new architecture ingests images and returns scanpaths, a sequence of points featuring a high likelihood of catching viewers' attention.
arXiv Detail & Related papers (2022-09-22T22:27:08Z) - Impact of a DCT-driven Loss in Attention-based Knowledge-Distillation
for Scene Recognition [64.29650787243443]
We propose and analyse the use of a 2D frequency transform of the activation maps before transferring them.
This strategy enhances knowledge transferability in tasks such as scene recognition.
We publicly release the training and evaluation framework used along this paper at http://www.vpu.eps.uam.es/publications/DCTBasedKDForSceneRecognition.
arXiv Detail & Related papers (2022-05-04T11:05:18Z) - Explainability-aided Domain Generalization for Image Classification [0.0]
We show that applying methods and architectures from the explainability literature can achieve state-of-the-art performance for the challenging task of domain generalization.
We develop a set of novel algorithms including DivCAM, an approach where the network receives guidance during training via gradient based class activation maps to focus on a diverse set of discriminative features.
Since these methods offer competitive performance on top of explainability, we argue that the proposed methods can be used as a tool to improve the robustness of deep neural network architectures.
arXiv Detail & Related papers (2021-04-05T02:27:01Z) - Knowledge Distillation By Sparse Representation Matching [107.87219371697063]
We propose Sparse Representation Matching (SRM) to transfer intermediate knowledge from one Convolutional Network (CNN) to another by utilizing sparse representation.
We formulate as a neural processing block, which can be efficiently optimized using gradient descent and integrated into any CNN in a plug-and-play manner.
Our experiments demonstrate that is robust to architectural differences between the teacher and student networks, and outperforms other KD techniques across several datasets.
arXiv Detail & Related papers (2021-03-31T11:47:47Z) - Joint Learning of Neural Transfer and Architecture Adaptation for Image
Recognition [77.95361323613147]
Current state-of-the-art visual recognition systems rely on pretraining a neural network on a large-scale dataset and finetuning the network weights on a smaller dataset.
In this work, we prove that dynamically adapting network architectures tailored for each domain task along with weight finetuning benefits in both efficiency and effectiveness.
Our method can be easily generalized to an unsupervised paradigm by replacing supernet training with self-supervised learning in the source domain tasks and performing linear evaluation in the downstream tasks.
arXiv Detail & Related papers (2021-03-31T08:15:17Z) - An analysis of the transfer learning of convolutional neural networks
for artistic images [1.9336815376402716]
Transfer learning from huge natural image datasets has become de facto the core of art analysis applications.
In this paper, we first use techniques for visualizing the network internal representations in order to provide clues to the understanding of what the network has learned on artistic images.
We provide a quantitative analysis of the changes introduced by the learning process thanks to metrics in both the feature and parameter spaces, as well as metrics computed on the set of maximal activation images.
arXiv Detail & Related papers (2020-11-05T09:45:32Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
Few-shot image classification has been proposed to effectively use only a limited number of labeled examples to train models for new classes.
We propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works.
We also present a new way to generalize the interpretability from the level of tasks to categories.
arXiv Detail & Related papers (2020-09-08T07:29:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.