論文の概要: A Light-weight contextual spelling correction model for customizing
transducer-based speech recognition systems
- arxiv url: http://arxiv.org/abs/2108.07493v1
- Date: Tue, 17 Aug 2021 08:14:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-18 13:29:21.956545
- Title: A Light-weight contextual spelling correction model for customizing
transducer-based speech recognition systems
- Title(参考訳): トランスデューサに基づく音声認識システムをカスタマイズする軽量文脈綴り補正モデル
- Authors: Xiaoqiang Wang, Yanqing Liu, Sheng Zhao, Jinyu Li
- Abstract要約: 本稿では,文脈関連認識誤りを補正するために,軽量な文脈スペル補正モデルを提案する。
実験の結果,約50%の単語誤り率削減でベースラインASRモデルの性能が向上した。
このモデルはまた、トレーニング中に見られない語彙外用語に対して優れたパフォーマンスを示す。
- 参考スコア(独自算出の注目度): 42.05399301143457
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It's challenging to customize transducer-based automatic speech recognition
(ASR) system with context information which is dynamic and unavailable during
model training. In this work, we introduce a light-weight contextual spelling
correction model to correct context-related recognition errors in
transducer-based ASR systems. We incorporate the context information into the
spelling correction model with a shared context encoder and use a filtering
algorithm to handle large-size context lists. Experiments show that the model
improves baseline ASR model performance with about 50% relative word error rate
reduction, which also significantly outperforms the baseline method such as
contextual LM biasing. The model also shows excellent performance for
out-of-vocabulary terms not seen during training.
- Abstract(参考訳): モデルトレーニング中に動的で利用できないコンテキスト情報を備えたトランスデューサベースの自動音声認識(ASR)システムをカスタマイズすることは困難である。
本研究では,トランスデューサに基づくASRシステムにおいて,文脈関連認識誤りを補正する軽量コンテキストスペル補正モデルを提案する。
コンテキスト情報を共有コンテキストエンコーダでスペル補正モデルに組み込むとともに,フィルタリングアルゴリズムを用いて大規模コンテキストリストを処理する。
実験の結果,約50%の単語誤り率削減でベースラインASRモデルの性能が向上し,文脈的LMバイアスなどのベースライン手法よりも大幅に向上した。
このモデルは、訓練中に見ることができない語彙外でも優れた性能を示す。
関連論文リスト
- Towards interfacing large language models with ASR systems using confidence measures and prompting [54.39667883394458]
本研究では,大言語モデル(LLM)を用いたASRテキストのポストホック修正について検討する。
精度の高い転写文に誤りを導入することを避けるため,信頼度に基づくフィルタリング手法を提案する。
その結果,競争力の低いASRシステムの性能が向上することが示唆された。
論文 参考訳(メタデータ) (2024-07-31T08:00:41Z) - Generative error correction for code-switching speech recognition using
large language models [49.06203730433107]
コードスイッチング(英: Code-switching, CS)とは、2つ以上の言語が同じ文内に混在する現象である。
本稿では,大規模言語モデル (LLM) と ASR が生成する仮説のリストを利用して,CS 問題に対処することを提案する。
論文 参考訳(メタデータ) (2023-10-17T14:49:48Z) - Improved Contextual Recognition In Automatic Speech Recognition Systems
By Semantic Lattice Rescoring [4.819085609772069]
本稿では,意味的格子処理によるASRシステム内における文脈認識の高度化のための新しい手法を提案する。
提案手法は,隠れマルコフモデルとガウス混合モデル(HMM-GMM)とディープニューラルネットワーク(DNN)モデルを用いて,精度を向上する。
本稿では,実験分析によるLibriSpeechデータセット上でのフレームワークの有効性を示す。
論文 参考訳(メタデータ) (2023-10-14T23:16:05Z) - Boosting Chinese ASR Error Correction with Dynamic Error Scaling
Mechanism [27.09416337926635]
現在の主流モデルは、しばしば単語レベルの特徴と音声情報を効果的に活用するのに苦労する。
本稿では,音素の誤りを検知し,訂正する動的エラースケーリング機構を取り入れた新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-07T09:19:59Z) - Contextual-Utterance Training for Automatic Speech Recognition [65.4571135368178]
本稿では,過去と将来の文脈発話を利用した文脈発話訓練手法を提案する。
また,自動音声認識(ASR)システムをストリーミングするための2モード文脈発話訓練手法を提案する。
提案手法により、WERと平均最後のトークン放出遅延を6%以上、40ms以上削減できる。
論文 参考訳(メタデータ) (2022-10-27T08:10:44Z) - Towards Contextual Spelling Correction for Customization of End-to-end
Speech Recognition Systems [27.483603895258437]
そこで本研究では,文脈的スペル補正モデルをエンド・ツー・エンドのASRシステム上に付加することで,コンテキストバイアスを行う新しい手法を提案する。
本稿では,大規模コンテキストリストを扱うフィルタリングアルゴリズムと,モデルのバイアス度を制御する性能バランス機構を提案する。
実験の結果,提案手法はASRシステムよりも51%の相対単語誤り率(WER)の低減を実現し,従来のバイアス法よりも優れていた。
論文 参考訳(メタデータ) (2022-03-02T06:00:48Z) - Error Correction in ASR using Sequence-to-Sequence Models [32.41875780785648]
自動音声認識における後編集では、ASRシステムによって生成された共通および系統的な誤りを自動的に修正する必要がある。
本稿では,事前学習型シーケンス・ツー・シーケンス・モデルであるBARTを用いて,デノナイジングモデルとして機能することを提案する。
アクセント付き音声データによる実験結果から,ASRの誤りを効果的に修正できることが示唆された。
論文 参考訳(メタデータ) (2022-02-02T17:32:59Z) - Pretraining Techniques for Sequence-to-Sequence Voice Conversion [57.65753150356411]
シークエンス・トゥ・シークエンス(seq2seq)音声変換(VC)モデルは、韻律を変換する能力によって魅力的である。
我々は,大規模コーパスが容易に利用できる他の音声処理タスク(通常,テキスト音声(TTS)と自動音声認識(ASR))から知識を伝達することを提案する。
このような事前訓練されたASRまたはTSモデルパラメータを持つVCモデルは、高忠実で高知能な変換可能な音声に対して効果的な隠れ表現を生成することができると論じる。
論文 参考訳(メタデータ) (2020-08-07T11:02:07Z) - Hybrid Autoregressive Transducer (hat) [11.70833387055716]
本稿では,ハイブリッド自己回帰トランスデューサ(HAT)モデルの提案と評価を行う。
従来の音声認識システムのモジュラリティを保った時間同期エンコーダデコーダモデルである。
提案手法を大規模音声検索タスクで評価する。
論文 参考訳(メタデータ) (2020-03-12T20:47:06Z) - Joint Contextual Modeling for ASR Correction and Language Understanding [60.230013453699975]
言語理解(LU)と協調してASR出力の文脈的言語補正を行うマルチタスクニューラルアプローチを提案する。
そこで本研究では,市販のASRおよびLUシステムの誤差率を,少量のドメイン内データを用いてトレーニングしたジョイントモデルと比較して14%削減できることを示した。
論文 参考訳(メタデータ) (2020-01-28T22:09:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。