論文の概要: Self-Supervised Pretraining and Controlled Augmentation Improve Rare
Wildlife Recognition in UAV Images
- arxiv url: http://arxiv.org/abs/2108.07582v1
- Date: Tue, 17 Aug 2021 12:14:28 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-18 18:06:35.578216
- Title: Self-Supervised Pretraining and Controlled Augmentation Improve Rare
Wildlife Recognition in UAV Images
- Title(参考訳): 自己教師付き事前訓練と制御強化によるuav画像のレア野生生物認識の改善
- Authors: Xiaochen Zheng and Benjamin Kellenberger and Rui Gong and Irena
Hajnsek and Devis Tuia
- Abstract要約: 本稿では,自己指導型プレトレーニングに頼って,必要なトレーニングデータの量を削減する手法を提案する。
MoCo, CLD, および幾何拡張の組み合わせは, ImageNet 上で事前学習された従来のモデルよりも大きなマージンで優れていることを示す。
- 参考スコア(独自算出の注目度): 9.220908533011068
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated animal censuses with aerial imagery are a vital ingredient towards
wildlife conservation. Recent models are generally based on deep learning and
thus require vast amounts of training data. Due to their scarcity and minuscule
size, annotating animals in aerial imagery is a highly tedious process. In this
project, we present a methodology to reduce the amount of required training
data by resorting to self-supervised pretraining. In detail, we examine a
combination of recent contrastive learning methodologies like Momentum Contrast
(MoCo) and Cross-Level Instance-Group Discrimination (CLD) to condition our
model on the aerial images without the requirement for labels. We show that a
combination of MoCo, CLD, and geometric augmentations outperforms conventional
models pre-trained on ImageNet by a large margin. Crucially, our method still
yields favorable results even if we reduce the number of training animals to
just 10%, at which point our best model scores double the recall of the
baseline at similar precision. This effectively allows reducing the number of
required annotations to a fraction while still being able to train
high-accuracy models in such highly challenging settings.
- Abstract(参考訳): 航空画像による動物の自動国勢調査は野生生物保護にとって重要な要素である。
最近のモデルは一般的にディープラーニングに基づいており、大量のトレーニングデータを必要とする。
その希少さと極小さのため、空中画像中の動物に注釈をつけることは非常に面倒なプロセスである。
本稿では,自己指導型事前学習に頼って,必要なトレーニングデータの量を削減する手法を提案する。
具体的には,モメンタムコントラスト (moco) やクロスレベルインスタンスグループ識別 (cld) といった近年のコントラスト学習手法を組み合わせて,ラベルを必要とせず,航空画像にモデルを条件付けする手法について検討した。
MoCo, CLD, および幾何拡張の組み合わせは, ImageNet 上で事前学習された従来のモデルよりも大きなマージンで優れていることを示す。
重要な点として,訓練動物数を10%に減らしても良好な結果が得られ,その時点でのベストモデルスコアは,同じ精度でベースラインのリコールの2倍になる。
これにより、非常に困難な設定で精度の高いモデルをトレーニングしながら、必要なアノテーションの数を分数に減らすことができる。
関連論文リスト
- Multimodal Foundation Models for Zero-shot Animal Species Recognition in
Camera Trap Images [57.96659470133514]
モーションアクティベートカメラトラップは、世界中の野生生物を追跡・監視するための効率的なツールである。
教師付き学習技術は、そのような画像を分析するためにうまく展開されているが、そのような訓練には専門家のアノテーションが必要である。
コストのかかるラベル付きデータへの依存を減らすことは、人間の労働力を大幅に減らした大規模野生生物追跡ソリューションを開発する上で、大きな可能性を秘めている。
論文 参考訳(メタデータ) (2023-11-02T08:32:00Z) - No Data Augmentation? Alternative Regularizations for Effective Training
on Small Datasets [0.0]
我々は、小さな画像分類データセットにおける教師あり学習の限界を推し進めるために、代替正規化戦略について研究する。
特に,モデルパラメータのノルムを通した最適学習率と重み減衰対の選択に非依存を用いる。
テスト精度は66.5%に達し、最先端の手法に匹敵する。
論文 参考訳(メタデータ) (2023-09-04T16:13:59Z) - The effectiveness of MAE pre-pretraining for billion-scale pretraining [65.98338857597935]
モデルの初期化には自己教師付きMAE技術を用いる。
画像分類, 映像認識, 物体検出, ローショット分類, ゼロショット認識にまたがる10種類の視覚的タスクに対して, 事前学習の有効性を評価する。
論文 参考訳(メタデータ) (2023-03-23T17:56:12Z) - Rare Wildlife Recognition with Self-Supervised Representation Learning [0.0]
本稿では,自己指導型プレトレーニングに頼って,必要なトレーニングデータの量を削減する手法を提案する。
MoCo, CLD, および幾何拡張の組み合わせは, ImageNetで事前訓練された従来のモデルよりも大きなマージンで優れていることを示す。
論文 参考訳(メタデータ) (2022-10-29T17:57:38Z) - Bag of Tricks for Long-Tail Visual Recognition of Animal Species in
Camera Trap Images [2.294014185517203]
近年,カメラトラップ画像における動物種の長期的視覚認識に対処する手法が提案されている。
一般に、平方根サンプリングは、マイノリティクラスの性能を約10%向上させる方法であった。
提案手法は, テール級の性能と, ヘッド級の精度との最良のトレードオフを達成した。
論文 参考訳(メタデータ) (2022-06-24T18:30:26Z) - On Data Scaling in Masked Image Modeling [36.00347416479826]
マスク付き画像モデリング(MIM)は、大きなデータの恩恵を受けられないと疑われている。
ImageNet-1Kの10%から完全なImageNet-22Kまで、モデルサイズは4900万から10億まで、トレーニング期間は125万から5万まで。
事前トレーニングにおけるバリデーションの損失は、複数のタスクの微調整においてモデルがどれだけうまく機能するかを測定するのに良い指標である。
論文 参考訳(メタデータ) (2022-06-09T17:58:24Z) - Ensembling Off-the-shelf Models for GAN Training [55.34705213104182]
事前学習されたコンピュータビジョンモデルは、識別器のアンサンブルで使用する場合、性能を著しく向上させることができる。
本研究では,事前学習したモデル埋め込みにおける実検体と偽検体間の線形分離性を検証し,効率的な選択機構を提案する。
本手法は, 限られたデータと大規模設定の両方において, GAN トレーニングを改善することができる。
論文 参考訳(メタデータ) (2021-12-16T18:59:50Z) - Zoo-Tuning: Adaptive Transfer from a Zoo of Models [82.9120546160422]
Zoo-Tuningは、事前訓練されたモデルのパラメータをターゲットタスクに適応的に転送することを学ぶ。
我々は、強化学習、画像分類、顔のランドマーク検出など、様々なタスクに対するアプローチを評価した。
論文 参考訳(メタデータ) (2021-06-29T14:09:45Z) - Self-Damaging Contrastive Learning [92.34124578823977]
ラベルのないデータは一般に不均衡であり、長い尾の分布を示す。
本稿では,クラスを知らずに表現学習を自動的にバランスをとるための,自己学習コントラスト学習という原則的枠組みを提案する。
実験の結果,SDCLRは全体としての精度だけでなく,バランス性も著しく向上することがわかった。
論文 参考訳(メタデータ) (2021-06-06T00:04:49Z) - Deep learning with self-supervision and uncertainty regularization to
count fish in underwater images [28.261323753321328]
効果的な保全活動には、効果的な人口監視が必要です。
画像サンプリングによる人口のモニタリングにより、データ収集は安価で広く、侵入性が低くなっている。
このようなデータから動物を数えることは、特に騒々しい画像に密に詰め込まれた場合、困難です。
深層学習は多くのコンピュータビジョンタスクの最先端の手法であるが、動物を数えるためにはまだ十分に研究されていない。
論文 参考訳(メタデータ) (2021-04-30T13:02:19Z) - Background Splitting: Finding Rare Classes in a Sea of Background [55.03789745276442]
我々は,少数の稀なカテゴリの画像分類のための,高精度な深層モデルの訓練という現実的な問題に焦点をあてる。
これらのシナリオでは、ほとんどの画像はデータセットの背景カテゴリに属します(データセットの95%は背景です)。
非バランスなデータセットをトレーニングするための標準的な微調整アプローチと最先端アプローチの両方が、この極端な不均衡の存在下で正確な深層モデルを生成していないことを実証する。
論文 参考訳(メタデータ) (2020-08-28T23:05:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。