If It's Not Enough, Make It So: Reducing Authentic Data Demand in Face Recognition through Synthetic Faces
- URL: http://arxiv.org/abs/2404.03537v4
- Date: Fri, 26 Apr 2024 14:01:36 GMT
- Title: If It's Not Enough, Make It So: Reducing Authentic Data Demand in Face Recognition through Synthetic Faces
- Authors: Andrea Atzori, Fadi Boutros, Naser Damer, Gianni Fenu, Mirko Marras,
- Abstract summary: Large face datasets are primarily sourced from web-based images, lacking explicit user consent.
In this paper, we examine whether and how synthetic face data can be used to train effective face recognition models.
- Score: 16.977459035497162
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in deep face recognition have spurred a growing demand for large, diverse, and manually annotated face datasets. Acquiring authentic, high-quality data for face recognition has proven to be a challenge, primarily due to privacy concerns. Large face datasets are primarily sourced from web-based images, lacking explicit user consent. In this paper, we examine whether and how synthetic face data can be used to train effective face recognition models with reduced reliance on authentic images, thereby mitigating data collection concerns. First, we explored the performance gap among recent state-of-the-art face recognition models, trained with synthetic data only and authentic (scarce) data only. Then, we deepened our analysis by training a state-of-the-art backbone with various combinations of synthetic and authentic data, gaining insights into optimizing the limited use of the latter for verification accuracy. Finally, we assessed the effectiveness of data augmentation approaches on synthetic and authentic data, with the same goal in mind. Our results highlighted the effectiveness of FR trained on combined datasets, particularly when combined with appropriate augmentation techniques.
Related papers
- Second Edition FRCSyn Challenge at CVPR 2024: Face Recognition Challenge in the Era of Synthetic Data [104.45155847778584]
This paper presents an overview of the 2nd edition of the Face Recognition Challenge in the Era of Synthetic Data (FRCSyn)
FRCSyn aims to investigate the use of synthetic data in face recognition to address current technological limitations.
arXiv Detail & Related papers (2024-04-16T08:15:10Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
The success of AI models relies on the availability of large, diverse, and high-quality datasets.
Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns.
arXiv Detail & Related papers (2024-04-11T06:34:17Z) - SDFR: Synthetic Data for Face Recognition Competition [51.9134406629509]
Large-scale face recognition datasets are collected by crawling the Internet and without individuals' consent, raising legal, ethical, and privacy concerns.
Recently several works proposed generating synthetic face recognition datasets to mitigate concerns in web-crawled face recognition datasets.
This paper presents the summary of the Synthetic Data for Face Recognition (SDFR) Competition held in conjunction with the 18th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2024)
The SDFR competition was split into two tasks, allowing participants to train face recognition systems using new synthetic datasets and/or existing ones.
arXiv Detail & Related papers (2024-04-06T10:30:31Z) - SASMU: boost the performance of generalized recognition model using
synthetic face dataset [5.596292759115785]
We propose SASMU, a simple, novel, and effective method for face recognition using a synthetic dataset.
Our proposed method consists of spatial data augmentation (SA) and spectrum mixup (SMU)
arXiv Detail & Related papers (2023-06-02T11:11:00Z) - Face Recognition Using Synthetic Face Data [0.0]
We highlight the promising application of synthetic data, generated through rendering digital faces via our computer graphics pipeline, in achieving competitive results.
By finetuning the model,we obtain results that rival those achieved when training with hundreds of thousands of real images.
We also investigate the contribution of adding intra-class variance factors (e.g., makeup, accessories, haircuts) on model performance.
arXiv Detail & Related papers (2023-05-17T09:26:10Z) - Synthetic Data for Face Recognition: Current State and Future Prospects [14.288753326973984]
This work aims at providing a clear and structured picture of the use-cases of synthetic face data in face recognition.
We discuss the challenges facing the use of synthetic data in face recognition development and several future prospects of synthetic data in the domain of face recognition.
arXiv Detail & Related papers (2023-05-01T18:25:22Z) - Unsupervised Face Recognition using Unlabeled Synthetic Data [16.494722503803196]
We propose an unsupervised face recognition model based on unlabeled synthetic data (U SynthFace)
Our proposed U SynthFace learns to maximize the similarity between two augmented images of the same synthetic instance.
We prove the effectiveness of our U SynthFace in achieving relatively high recognition accuracies using unlabeled synthetic data.
arXiv Detail & Related papers (2022-11-14T14:05:19Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
We study whether and how synthetic images generated from state-of-the-art text-to-image generation models can be used for image recognition tasks.
We showcase the powerfulness and shortcomings of synthetic data from existing generative models, and propose strategies for better applying synthetic data for recognition tasks.
arXiv Detail & Related papers (2022-10-14T06:54:24Z) - SynFace: Face Recognition with Synthetic Data [83.15838126703719]
We devise the SynFace with identity mixup (IM) and domain mixup (DM) to mitigate the performance gap.
We also perform a systematically empirical analysis on synthetic face images to provide some insights on how to effectively utilize synthetic data for face recognition.
arXiv Detail & Related papers (2021-08-18T03:41:54Z) - Joint Deep Learning of Facial Expression Synthesis and Recognition [97.19528464266824]
We propose a novel joint deep learning of facial expression synthesis and recognition method for effective FER.
The proposed method involves a two-stage learning procedure. Firstly, a facial expression synthesis generative adversarial network (FESGAN) is pre-trained to generate facial images with different facial expressions.
In order to alleviate the problem of data bias between the real images and the synthetic images, we propose an intra-class loss with a novel real data-guided back-propagation (RDBP) algorithm.
arXiv Detail & Related papers (2020-02-06T10:56:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.