DRDrV3: Complete Lesion Detection in Fundus Images Using Mask R-CNN,
Transfer Learning, and LSTM
- URL: http://arxiv.org/abs/2108.08095v1
- Date: Wed, 18 Aug 2021 11:36:37 GMT
- Title: DRDrV3: Complete Lesion Detection in Fundus Images Using Mask R-CNN,
Transfer Learning, and LSTM
- Authors: Farzan Shenavarmasouleh, Farid Ghareh Mohammadi, M. Hadi Amini, Thiab
Taha, Khaled Rasheed, Hamid R. Arabnia
- Abstract summary: We propose a new lesion detection architecture, comprising of two sub-modules, which is an optimal solution to detect and find lesions caused by Diabetic Retinopathy (DR)
We also use two popular evaluation criteria to evaluate the outputs of our models, which are intersection over union (IOU) and mean average precision (mAP)
We hypothesize that this new solution enables specialists to detect lesions with high confidence and estimate the severity of the damage with high accuracy.
- Score: 2.9360071145551068
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical Imaging is one of the growing fields in the world of computer vision.
In this study, we aim to address the Diabetic Retinopathy (DR) problem as one
of the open challenges in medical imaging. In this research, we propose a new
lesion detection architecture, comprising of two sub-modules, which is an
optimal solution to detect and find not only the type of lesions caused by DR,
their corresponding bounding boxes, and their masks; but also the severity
level of the overall case. Aside from traditional accuracy, we also use two
popular evaluation criteria to evaluate the outputs of our models, which are
intersection over union (IOU) and mean average precision (mAP). We hypothesize
that this new solution enables specialists to detect lesions with high
confidence and estimate the severity of the damage with high accuracy.
Related papers
- Gravity Network for end-to-end small lesion detection [50.38534263407915]
This paper introduces a novel one-stage end-to-end detector specifically designed to detect small lesions in medical images.
Precise localization of small lesions presents challenges due to their appearance and the diverse contextual backgrounds in which they are found.
We refer to this new architecture as GravityNet, and the novel anchors as gravity points since they appear to be "attracted" by the lesions.
arXiv Detail & Related papers (2023-09-22T14:02:22Z) - DRAC: Diabetic Retinopathy Analysis Challenge with Ultra-Wide Optical
Coherence Tomography Angiography Images [51.27125547308154]
We organized a challenge named "DRAC - Diabetic Retinopathy Analysis Challenge" in conjunction with the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022)
The challenge consists of three tasks: segmentation of DR lesions, image quality assessment and DR grading.
This paper presents a summary and analysis of the top-performing solutions and results for each task of the challenge.
arXiv Detail & Related papers (2023-04-05T12:04:55Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Assessing Coarse-to-Fine Deep Learning Models for Optic Disc and Cup
Segmentation in Fundus Images [0.0]
coarse-to-fine deep learning algorithms are used to efficiently measure the vertical cup-to-disc ratio (vCDR) in fundus images.
We present a comprehensive analysis of different coarse-to-fine designs for OD/OC segmentation using 5 public databases.
Our analysis shows that these algorithms not necessarily outperfom standard multi-class single-stage models.
arXiv Detail & Related papers (2022-09-28T19:19:16Z) - ROCT-Net: A new ensemble deep convolutional model with improved spatial
resolution learning for detecting common diseases from retinal OCT images [0.0]
This paper presents a new enhanced deep ensemble convolutional neural network for detecting retinal diseases from OCT images.
Our model generates rich and multi-resolution features by employing the learning architectures of two robust convolutional models.
Our experiments on two datasets and comparing our model with some other well-known deep convolutional neural networks have proven that our architecture can increase the classification accuracy up to 5%.
arXiv Detail & Related papers (2022-03-03T17:51:01Z) - Explainable multiple abnormality classification of chest CT volumes with
AxialNet and HiResCAM [89.2175350956813]
We introduce the challenging new task of explainable multiple abnormality classification in volumetric medical images.
We propose a multiple instance learning convolutional neural network, AxialNet, that allows identification of top slices for each abnormality.
We then aim to improve the model's learning through a novel mask loss that leverages HiResCAM and 3D allowed regions.
arXiv Detail & Related papers (2021-11-24T01:14:33Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - Deep Volumetric Universal Lesion Detection using Light-Weight Pseudo 3D
Convolution and Surface Point Regression [23.916776570010285]
Computer-aided lesion/significant-findings detection techniques are at the core of medical imaging.
We propose a novel deep anchor-free one-stage VULD framework that incorporates (1) P3DC operators to recycle the architectural configurations and pre-trained weights from the off-the-shelf 2D networks.
New SPR method to effectively regress the 3D lesion spatial extents by pinpointing their representative key points on lesion surfaces.
arXiv Detail & Related papers (2020-08-30T19:42:06Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
People with diabetes are at risk of developing diabetic retinopathy (DR)
Computer-aided DR diagnosis is a promising tool for early detection of DR and severity grading.
This dataset has 1,842 images with pixel-level DR-related lesion annotations, and 1,000 images with image-level labels graded by six board-certified ophthalmologists.
arXiv Detail & Related papers (2020-08-22T07:48:04Z) - DRDr: Automatic Masking of Exudates and Microaneurysms Caused By
Diabetic Retinopathy Using Mask R-CNN and Transfer Learning [2.0559497209595823]
We make use of Convolutional Neural Networks (CNNs) and Transfer Learning to locate and generate high-quality segmentation mask.
We create our normalized database out of e-ophtha EX and e-ophtha MA and tweak Mask R-CNN to detect small lesions.
Our model achieves promising test mAP of 0.45, altogether showing that it can aid clinicians and ophthalmologist in the process of detecting and treating the infamous DR.
arXiv Detail & Related papers (2020-07-04T07:20:03Z) - Pseudo-Labeling for Small Lesion Detection on Diabetic Retinopathy
Images [12.49381528673824]
Diabetic retinopathy (DR) is a primary cause of blindness in working-age people worldwide.
About 3 to 4 million people with diabetes become blind because of DR every year.
Diagnosis of DR through color fundus images is a common approach to mitigate such problem.
arXiv Detail & Related papers (2020-03-26T17:13:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.