OCSVM-Guided Representation Learning for Unsupervised Anomaly Detection
- URL: http://arxiv.org/abs/2507.21164v1
- Date: Fri, 25 Jul 2025 13:00:40 GMT
- Title: OCSVM-Guided Representation Learning for Unsupervised Anomaly Detection
- Authors: Nicolas Pinon, Carole Lartizien,
- Abstract summary: Unsupervised anomaly detection (UAD) aims to detect anomalies without labeled data.<n>We propose a novel method that tightly couples representation learning with an analytically solvable one-class SVM.<n>The model is evaluated on two tasks: a new benchmark based on MNIST-C, and a challenging brain MRI subtle lesion detection task.
- Score: 1.0190194769786831
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised anomaly detection (UAD) aims to detect anomalies without labeled data, a necessity in many machine learning applications where anomalous samples are rare or not available. Most state-of-the-art methods fall into two categories: reconstruction-based approaches, which often reconstruct anomalies too well, and decoupled representation learning with density estimators, which can suffer from suboptimal feature spaces. While some recent methods attempt to couple feature learning and anomaly detection, they often rely on surrogate objectives, restrict kernel choices, or introduce approximations that limit their expressiveness and robustness. To address this challenge, we propose a novel method that tightly couples representation learning with an analytically solvable one-class SVM (OCSVM), through a custom loss formulation that directly aligns latent features with the OCSVM decision boundary. The model is evaluated on two tasks: a new benchmark based on MNIST-C, and a challenging brain MRI subtle lesion detection task. Unlike most methods that focus on large, hyperintense lesions at the image level, our approach succeeds to target small, non-hyperintense lesions, while we evaluate voxel-wise metrics, addressing a more clinically relevant scenario. Both experiments evaluate a form of robustness to domain shifts, including corruption types in MNIST-C and scanner/age variations in MRI. Results demonstrate performance and robustness of our proposed mode,highlighting its potential for general UAD and real-world medical imaging applications. The source code is available at https://github.com/Nicolas-Pinon/uad_ocsvm_guided_repr_learning
Related papers
- U2AD: Uncertainty-based Unsupervised Anomaly Detection Framework for Detecting T2 Hyperintensity in MRI Spinal Cord [7.811634659561162]
T2 hyperintensities in spinal cord MR images are crucial biomarkers for conditions such as degenerative cervical myelopathy.<n>Deep learning methods have shown promise in lesion detection, but most supervised approaches are heavily dependent on large, annotated datasets.<n>We propose an Uncertainty-based Unsupervised Anomaly Detection framework, termed U2AD, to address these limitations.
arXiv Detail & Related papers (2025-03-17T17:33:32Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper proposes a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.<n>The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.<n>We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - Learning Feature Inversion for Multi-class Anomaly Detection under General-purpose COCO-AD Benchmark [101.23684938489413]
Anomaly detection (AD) is often focused on detecting anomalies for industrial quality inspection and medical lesion examination.
This work first constructs a large-scale and general-purpose COCO-AD dataset by extending COCO to the AD field.
Inspired by the metrics in the segmentation field, we propose several more practical threshold-dependent AD-specific metrics.
arXiv Detail & Related papers (2024-04-16T17:38:26Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - One-Class SVM on siamese neural network latent space for Unsupervised
Anomaly Detection on brain MRI White Matter Hyperintensities [0.0]
We propose an unsupervised anomaly detection (UAD) method based on a latent space constructed by a siamese patch-based auto-encoder.
We show in par performance with the two best performing state-of-the-art methods reported so far.
arXiv Detail & Related papers (2023-04-17T08:19:23Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
Unsupervised anomaly detection (UAD) can learn a data distribution from an unlabelled dataset of healthy subjects and then be applied to detect out of distribution samples.
This research proposes a compact version of the "context-encoding" VAE (ceVAE) model, combined with pre and post-processing steps, creating a UAD pipeline (StRegA)
The proposed pipeline achieved a Dice score of 0.642$pm$0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859$pm$0.112 while detecting artificially induced anomalies.
arXiv Detail & Related papers (2022-01-31T14:27:35Z) - About Explicit Variance Minimization: Training Neural Networks for
Medical Imaging With Limited Data Annotations [2.3204178451683264]
Variance Aware Training (VAT) method exploits this property by introducing the variance error into the model loss function.
We validate VAT on three medical imaging datasets from diverse domains and various learning objectives.
arXiv Detail & Related papers (2021-05-28T21:34:04Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Autoencoders for Unsupervised Anomaly Segmentation in Brain MR Images: A
Comparative Study [43.26668942258135]
New approaches in the field of Unsupervised Anomaly Detection (UAD) in brain MRI.
Main principle behind these works is to learn a model of normal anatomy by learning to compress and recover healthy data.
concept is of great interest to the medical image analysis community as it i) relieves from the need of vast amounts of manually segmented training data.
arXiv Detail & Related papers (2020-04-07T11:12:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.