Simulating gauge theories with variational quantum eigensolvers in
superconducting microwave cavities
- URL: http://arxiv.org/abs/2108.08248v2
- Date: Wed, 18 Oct 2023 17:39:53 GMT
- Title: Simulating gauge theories with variational quantum eigensolvers in
superconducting microwave cavities
- Authors: Jinglei Zhang, Ryan Ferguson, Stefan K\"uhn, Jan F. Haase, C.M.
Wilson, Karl Jansen, Christine A. Muschik
- Abstract summary: A variational quantum eigensolver (VQE) delegates costly state preparations and measurements to quantum hardware.
We propose a bosonic VQE using superconducting microwave cavities, overcoming the typical restriction of a small Hilbert space when the VQE is qubit based.
- Score: 2.0781167019314806
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Quantum-enhanced computing methods are promising candidates to solve
currently intractable problems. We consider here a variational quantum
eigensolver (VQE), that delegates costly state preparations and measurements to
quantum hardware, while classical optimization techniques guide the quantum
hardware to create a desired target state. In this work, we propose a bosonic
VQE using superconducting microwave cavities, overcoming the typical
restriction of a small Hilbert space when the VQE is qubit based. The
considered platform allows for strong nonlinearities between photon modes,
which are highly customisable and can be tuned in situ, i.e. during running
experiments. Our proposal hence allows for the realization of a wide range of
bosonic ansatz states, and is therefore especially useful when simulating
models involving degrees of freedom that cannot be simply mapped to qubits,
such as gauge theories, that include components which require
infinite-dimensional Hilbert spaces. We thus propose to experimentally apply
this bosonic VQE to the U(1) Higgs model including a topological term, which in
general introduces a sign problem in the model, making it intractable with
conventional Monte Carlo methods.
Related papers
- Large-scale quantum annealing simulation with tensor networks and belief propagation [0.0]
We show that quantum annealing for 3-regular graphs can be classically simulated even at scales of 1000 qubits and 5000000qubit gates.
For non-degenerate instances, the unique solution can be read out from the final reduced single-qubit states.
For degenerate problems, such as MaxCut, we introduce an approximate measurement simulation algorithm for graph tensor-network states.
arXiv Detail & Related papers (2024-09-18T18:00:08Z) - Pre-optimizing variational quantum eigensolvers with tensor networks [1.4512477254432858]
We present and benchmark an approach where we find good starting parameters for parameterized quantum circuits by simulating VQE.
We apply this approach to the 1D and 2D Fermi-Hubbard model with system sizes that use up to 32 qubits.
In 2D, the parameters that VTNE finds have significantly lower energy than their starting configurations, and we show that starting VQE from these parameters requires non-trivially fewer operations to come down to a given energy.
arXiv Detail & Related papers (2023-10-19T17:57:58Z) - Wasserstein Quantum Monte Carlo: A Novel Approach for Solving the
Quantum Many-Body Schr\"odinger Equation [56.9919517199927]
"Wasserstein Quantum Monte Carlo" (WQMC) uses the gradient flow induced by the Wasserstein metric, rather than Fisher-Rao metric, and corresponds to transporting the probability mass, rather than teleporting it.
We demonstrate empirically that the dynamics of WQMC results in faster convergence to the ground state of molecular systems.
arXiv Detail & Related papers (2023-07-06T17:54:08Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Quantum optimization within lattice gauge theory model on a quantum
simulator [7.48916170938768]
Rydberg atom arrays constitute one of the most rapidly developing arenas for quantum simulation and quantum computing.
SQA protocol can be realized easily on quantum simulation platforms such as Rydberg array D-wave annealer.
arXiv Detail & Related papers (2021-05-15T04:14:38Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Towards simulating 2D effects in lattice gauge theories on a quantum
computer [1.327151508840301]
We propose an experimental quantum simulation scheme to study ground state properties in two-dimensional quantum electrodynamics (2D QED) using existing quantum technology.
The proposal builds on a formulation of lattice gauge theories as effective spin models in arXiv:2006.14160.
We present two Variational Quantum Eigensolver (VQE) based protocols for the study of magnetic field effects, and for taking an important first step towards computing the running coupling of QED.
arXiv Detail & Related papers (2020-08-21T01:20:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.