Towards Neural Variational Monte Carlo That Scales Linearly with System
Size
- URL: http://arxiv.org/abs/2212.11296v1
- Date: Wed, 21 Dec 2022 19:00:04 GMT
- Title: Towards Neural Variational Monte Carlo That Scales Linearly with System
Size
- Authors: Or Sharir, Garnet Kin-Lic Chan and Anima Anandkumar
- Abstract summary: Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
- Score: 67.09349921751341
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum many-body problems are some of the most challenging problems in
science and are central to demystifying some exotic quantum phenomena, e.g.,
high-temperature superconductors. The combination of neural networks (NN) for
representing quantum states, coupled with the Variational Monte Carlo (VMC)
algorithm, has been shown to be a promising method for solving such problems.
However, the run-time of this approach scales quadratically with the number of
simulated particles, constraining the practically usable NN to - in machine
learning terms - minuscule sizes (<10M parameters). Considering the many
breakthroughs brought by extreme NN in the +1B parameters scale to other
domains, lifting this constraint could significantly expand the set of quantum
systems we can accurately simulate on classical computers, both in size and
complexity. We propose a NN architecture called Vector-Quantized Neural Quantum
States (VQ-NQS) that utilizes vector-quantization techniques to leverage
redundancies in the local-energy calculations of the VMC algorithm - the source
of the quadratic scaling. In our preliminary experiments, we demonstrate VQ-NQS
ability to reproduce the ground state of the 2D Heisenberg model across various
system sizes, while reporting a significant reduction of about ${\times}10$ in
the number of FLOPs in the local-energy calculation.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Paths towards time evolution with larger neural-network quantum states [17.826631514127012]
We consider a quantum quench from the paramagnetic to the anti-ferromagnetic phase in the tilted Ising model.
We show that for both types of networks, the projected time-dependent variational Monte Carlo (p-tVMC) method performs better than the non-projected approach.
arXiv Detail & Related papers (2024-06-05T15:32:38Z) - Entanglement Forging with generative neural network models [0.0]
We show that a hybrid quantum-classical variational ans"atze can forge entanglement to lower quantum resource overhead.
The method is efficient in terms of the number of measurements required to achieve fixed precision on expected values of observables.
arXiv Detail & Related papers (2022-05-02T14:29:17Z) - Variational learning of quantum ground states on spiking neuromorphic
hardware [0.0]
High-dimensional sampling spaces and transient autocorrelations confront neural networks with a challenging computational bottleneck.
Compared to conventional neural networks, physical-model devices offer a fast, efficient and inherently parallel substrate.
We demonstrate the ability of a neuromorphic chip to represent the ground states of quantum spin models by variational energy minimization.
arXiv Detail & Related papers (2021-09-30T14:39:45Z) - Random Sampling Neural Network for Quantum Many-Body Problems [0.0]
We propose a general numerical method, Random Sampling Neural Networks (RSNN), to utilize the pattern recognition technique for the random sampling matrix elements of an interacting many-body system via a self-supervised learning approach.
Several exactly solvable 1D models, including Ising model with transverse field, Fermi-Hubbard model, and spin-$1/2$ $XXZ$ model, are used to test the applicability of RSNN.
arXiv Detail & Related papers (2020-11-10T15:52:44Z) - A Neural-Network Variational Quantum Algorithm for Many-Body Dynamics [15.435967947933404]
We propose a neural-network variational quantum algorithm to simulate the time evolution of quantum many-body systems.
The proposed algorithm can be efficiently implemented in near-term quantum computers with low measurement cost.
arXiv Detail & Related papers (2020-08-31T02:54:09Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.