論文の概要: Federated Variational Learning for Anomaly Detection in Multivariate
Time Series
- arxiv url: http://arxiv.org/abs/2108.08404v1
- Date: Wed, 18 Aug 2021 22:23:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-21 03:43:40.848261
- Title: Federated Variational Learning for Anomaly Detection in Multivariate
Time Series
- Title(参考訳): 多変量時系列における異常検出のためのフェデレーション変分学習
- Authors: Kai Zhang, Yushan Jiang, Lee Seversky, Chengtao Xu, Dahai Liu, Houbing
Song
- Abstract要約: 本稿では,非教師付き時系列異常検出フレームワークを提案する。
我々は,畳み込みGated Recurrent Unit(ConvGRU)モデルに基づいて,共有変分オートエンコーダ(VAE)を学習するために,エッジに分散したトレーニングデータを残しておく。
3つの実世界のネットワークセンサーデータセットの実験は、他の最先端モデルに対する我々のアプローチの利点を示しています。
- 参考スコア(独自算出の注目度): 13.328883578980237
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly detection has been a challenging task given high-dimensional
multivariate time series data generated by networked sensors and actuators in
Cyber-Physical Systems (CPS). Besides the highly nonlinear, complex, and
dynamic natures of such time series, the lack of labeled data impedes data
exploitation in a supervised manner and thus prevents an accurate detection of
abnormal phenomenons. On the other hand, the collected data at the edge of the
network is often privacy sensitive and large in quantity, which may hinder the
centralized training at the main server. To tackle these issues, we propose an
unsupervised time series anomaly detection framework in a federated fashion to
continuously monitor the behaviors of interconnected devices within a network
and alerts for abnormal incidents so that countermeasures can be taken before
undesired consequences occur. To be specific, we leave the training data
distributed at the edge to learn a shared Variational Autoencoder (VAE) based
on Convolutional Gated Recurrent Unit (ConvGRU) model, which jointly captures
feature and temporal dependencies in the multivariate time series data for
representation learning and downstream anomaly detection tasks. Experiments on
three real-world networked sensor datasets illustrate the advantage of our
approach over other state-of-the-art models. We also conduct extensive
experiments to demonstrate the effectiveness of our detection framework under
non-federated and federated settings in terms of overall performance and
detection latency.
- Abstract(参考訳): CPS(Cyber-Physical Systems)において,ネットワークセンサやアクチュエータによって生成された高次元多変量時系列データに対して異常検出は難しい課題である。
このような時系列の非常に非線形で複雑でダイナミックな性質に加えて、ラベル付きデータの欠如はデータ利用を監督的に妨げ、異常事象の正確な検出を防止する。
一方、ネットワークの端で収集されたデータは、しばしばプライバシーに敏感で量が多いため、メインサーバでの集中的なトレーニングを妨げる可能性がある。
これらの問題に対処するために,ネットワーク内の相互接続装置の動作を継続的に監視し,不必要な結果が発生する前に対策を講じるように警告する,教師なし時系列異常検出フレームワークを提案する。
具体的には,多変量時系列データにおける特徴と時間的依存関係を同時キャプチャして表現学習と下流異常検出タスクを行うConvolutional Gated Recurrent Unit(ConvGRU)モデルに基づく共有変分オートエンコーダ(VAE)を学習するために,エッジに分散したトレーニングデータを残しておく。
3つの実世界のネットワークセンサーデータセットの実験は、他の最先端モデルに対する我々のアプローチの利点を示しています。
また、全体的な性能と検出待ち時間の観点から、非フェデレーションおよびフェデレーション設定における検出フレームワークの有効性を示すために、広範囲な実験を行いました。
関連論文リスト
- USD: Unsupervised Soft Contrastive Learning for Fault Detection in Multivariate Time Series [6.055410677780381]
本研究では,データ拡張とソフトコントラスト学習の組み合わせを導入し,より正確に状態行動の多面的特性を捉えることを目的としている。
この二重戦略は、正常な状態と異常な状態を区別するモデルの能力を著しく向上させ、複数のデータセットと設定で障害検出性能が著しく向上する。
論文 参考訳(メタデータ) (2024-05-25T14:48:04Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - Deep Federated Anomaly Detection for Multivariate Time Series Data [93.08977495974978]
本稿では,Fed-ExDNN(Federated Exemplar-based Deep Neural Network)を用いて,異なるエッジデバイス上での多変量時系列データの異常検出を行う。
ExDNNとFed-ExDNNは、最先端の異常検出アルゴリズムやフェデレーション学習技術より優れていることを示す。
論文 参考訳(メタデータ) (2022-05-09T05:06:58Z) - A Semi-Supervised Approach for Abnormal Event Prediction on Large
Operational Network Time-Series Data [1.544681800932596]
本稿では,ネットワーク時系列と時間点間の依存関係を効率的にキャプチャする半教師付き手法を提案する。
本手法は, 正規および異常サンプルに対する分離可能な埋め込み空間を明示的に学習するために, ラベル付き限られたデータを使用することができる。
実験により,我々の手法は大規模実世界のネットワークログ上でのイベント検出において,最先端の手法よりも著しく優れていた。
論文 参考訳(メタデータ) (2021-10-14T18:33:57Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Unsupervised Deep Anomaly Detection for Multi-Sensor Time-Series Signals [10.866594993485226]
本稿では,Deep Convolutional Autoencoding Memory Network (CAE-M) という,ディープラーニングに基づく新しい異常検出アルゴリズムを提案する。
我々はまず,最大平均離散値(MMD)を用いたマルチセンサデータの空間依存性を特徴付けるディープ畳み込みオートエンコーダを構築する。
そして,線形(自己回帰モデル)と非線形予測(注意を伴う大規模LSTM)からなるメモリネットワークを構築し,時系列データから時間依存性を捉える。
論文 参考訳(メタデータ) (2021-07-27T06:48:20Z) - HIFI: Anomaly Detection for Multivariate Time Series with High-order
Feature Interactions [7.016615391171876]
HIFIは自動的に多変量特徴相互作用グラフを構築し、グラフ畳み込みニューラルネットワークを使用して高次特徴相互作用を実現する。
3つの公開データセットの実験は、最先端のアプローチと比較して、我々のフレームワークの優位性を示している。
論文 参考訳(メタデータ) (2021-06-11T04:57:03Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z) - Multi-Scale One-Class Recurrent Neural Networks for Discrete Event
Sequence Anomaly Detection [63.825781848587376]
本稿では,離散イベントシーケンス中の異常を検出する1クラスリカレントニューラルネットワークOC4Seqを提案する。
具体的には、OC4Seqは離散イベントシーケンスを遅延空間に埋め込み、異常を容易に検出することができる。
論文 参考訳(メタデータ) (2020-08-31T04:48:22Z) - RobustTAD: Robust Time Series Anomaly Detection via Decomposition and
Convolutional Neural Networks [37.16594704493679]
本稿では,ロバスト時系列異常検出フレームワークRobustTADを提案する。
時系列データのために、堅牢な季節差分解と畳み込みニューラルネットワークを統合する。
パブリックオンラインサービスとしてデプロイされ、Alibaba Groupのさまざまなビジネスシナリオで広く採用されている。
論文 参考訳(メタデータ) (2020-02-21T20:43:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。