Estimating distinguishability measures on quantum computers
- URL: http://arxiv.org/abs/2108.08406v4
- Date: Wed, 12 Jul 2023 15:07:18 GMT
- Title: Estimating distinguishability measures on quantum computers
- Authors: Soorya Rethinasamy, Rochisha Agarwal, Kunal Sharma, Mark M. Wilde
- Abstract summary: We propose and review several algorithms for estimating distinguishability measures based on trace distance and fidelity.
The fidelity-based algorithms offer novel physical interpretations of these distinguishability measures.
We find that the simulations converge well in both the noiseless and noisy scenarios.
- Score: 4.779196219827506
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The performance of a quantum information processing protocol is ultimately
judged by distinguishability measures that quantify how distinguishable the
actual result of the protocol is from the ideal case. The most prominent
distinguishability measures are those based on the fidelity and trace distance,
due to their physical interpretations. In this paper, we propose and review
several algorithms for estimating distinguishability measures based on trace
distance and fidelity. The algorithms can be used for distinguishing quantum
states, channels, and strategies (the last also known in the literature as
"quantum combs"). The fidelity-based algorithms offer novel physical
interpretations of these distinguishability measures in terms of the maximum
probability with which a single prover (or competing provers) can convince a
verifier to accept the outcome of an associated computation. We simulate many
of these algorithms by using a variational approach with parameterized quantum
circuits. We find that the simulations converge well in both the noiseless and
noisy scenarios, for all examples considered. Furthermore, the noisy
simulations exhibit a parameter noise resilience. Finally, we establish a
strong relationship between various quantum computational complexity classes
and distance estimation problems.
Related papers
- A differentiable quantum phase estimation algorithm [0.0]
We develop a strategy to integrate the quantum phase estimation algorithm within a fully differentiable framework.
This is accomplished by devising a smooth estimator able to tackle arbitrary initial states.
This work paves the way for new quantum algorithms that combine interference methods and quantum differentiable programming.
arXiv Detail & Related papers (2024-06-20T08:55:01Z) - A quantum k-nearest neighbors algorithm based on the Euclidean distance
estimation [0.0]
This article introduces a novel quantum k-NN algorithm based on the Euclidean distance.
Specifically, the algorithm is characterised by a quantum encoding requiring a low number of qubits and a simple quantum circuit not involving oracles.
arXiv Detail & Related papers (2023-05-07T14:21:44Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Benchmarking Small-Scale Quantum Devices on Computing Graph Edit
Distance [52.77024349608834]
Graph Edit Distance (GED) measures the degree of (dis)similarity between two graphs in terms of the operations needed to make them identical.
In this paper we present a comparative study of two quantum approaches to computing GED.
arXiv Detail & Related papers (2021-11-19T12:35:26Z) - Testing symmetry on quantum computers [3.481985817302898]
In quantum information and beyond, it is known that quantum states possessing symmetry are not useful for certain information-processing tasks.
This paper details several quantum algorithms that test the symmetry of quantum states and channels.
arXiv Detail & Related papers (2021-05-26T18:01:54Z) - Approximate Equivalence Checking of Noisy Quantum Circuits [8.36229449571485]
We study the problem of equivalence checking in the NISQ (Noisy Intermediate-Scale Quantum) computing realm where quantum noise is present inevitably.
The notion of approximate equivalence of (possibly noisy) quantum circuits is defined based on the Jamiolkowski fidelity.
We present two algorithms, aiming at different situations where the number of noises varies, for computing the fidelity between an ideal quantum circuit and its noisy implementation.
arXiv Detail & Related papers (2021-03-22T05:47:41Z) - Variational Quantum Algorithms for Trace Distance and Fidelity
Estimation [7.247285982078057]
We introduce hybrid quantum-classical algorithms for two distance measures on near-term quantum devices.
First, we introduce the Variational Trace Distance Estimation (VTDE) algorithm.
Second, we introduce the Variational Fidelity Estimation (VFE) algorithm.
arXiv Detail & Related papers (2020-12-10T15:56:58Z) - Direct estimation of quantum coherence by collective measurements [54.97898890263183]
We introduce a collective measurement scheme for estimating the amount of coherence in quantum states.
Our scheme outperforms other estimation methods based on tomography or adaptive measurements.
We show that our method is accessible with today's technology by implementing it experimentally with photons.
arXiv Detail & Related papers (2020-01-06T03:50:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.