Importance sampling for stochastic quantum simulations
- URL: http://arxiv.org/abs/2212.05952v2
- Date: Thu, 6 Apr 2023 09:10:19 GMT
- Title: Importance sampling for stochastic quantum simulations
- Authors: Oriel Kiss, Michele Grossi and Alessandro Roggero
- Abstract summary: We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
- Score: 68.8204255655161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simulating many-body quantum systems is a promising task for quantum
computers. However, the depth of most algorithms, such as product formulas,
scales with the number of terms in the Hamiltonian, and can therefore be
challenging to implement on near-term, as well as early fault-tolerant quantum
devices. An efficient solution is given by the stochastic compilation protocol
known as qDrift, which builds random product formulas by sampling from the
Hamiltonian according to the coefficients. In this work, we unify the qDrift
protocol with importance sampling, allowing us to sample from arbitrary
probability distributions, while controlling both the bias, as well as the
statistical fluctuations. We show that the simulation cost can be reduced while
achieving the same accuracy, by considering the individual simulation cost
during the sampling stage.
Moreover, we incorporate recent work on composite channel and compute
rigorous bounds on the bias and variance, showing how to choose the number of
samples, experiments, and time steps for a given target accuracy. These results
lead to a more efficient implementation of the qDrift protocol, both with and
without the use of composite channels. Theoretical results are confirmed by
numerical simulations performed on a lattice nuclear effective field theory.
Related papers
- Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
We tackle the task of sampling from a probability density as transporting a tractable density function to the target.
We employ physics-informed neural networks (PINNs) to approximate the respective partial differential equations (PDEs) solutions.
PINNs allow for simulation- and discretization-free optimization and can be trained very efficiently.
arXiv Detail & Related papers (2024-07-10T17:39:50Z) - Validation tests of GBS quantum computers give evidence for quantum
advantage with a decoherent target [62.997667081978825]
We use positive-P phase-space simulations of grouped count probabilities as a fingerprint for verifying multi-mode data.
We show how one can disprove faked data, and apply this to a classical count algorithm.
arXiv Detail & Related papers (2022-11-07T12:00:45Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - On Quantum Circuits for Discrete Graphical Models [1.0965065178451106]
We provide the first method that allows one to provably generate unbiased and independent samples from general discrete factor models.
Our method is compatible with multi-body interactions and its success probability does not depend on the number of variables.
Experiments with quantum simulation as well as actual quantum hardware show that our method can carry out sampling and parameter learning on quantum computers.
arXiv Detail & Related papers (2022-06-01T11:03:51Z) - Benchmarking Quantum Simulators using Ergodic Quantum Dynamics [4.2392660892009255]
We analyze a sample-efficient protocol to estimate the fidelity between an experimentally prepared state and an ideal state.
We numerically demonstrate our protocol for a variety of quantum simulator platforms.
arXiv Detail & Related papers (2022-05-24T17:18:18Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Randomizing multi-product formulas for Hamiltonian simulation [2.2049183478692584]
We introduce a scheme for quantum simulation that unites the advantages of randomized compiling on the one hand and higher-order multi-product formulas on the other.
Our framework reduces the circuit depth by circumventing the need for oblivious amplitude amplification.
Our algorithms achieve a simulation error that shrinks exponentially with the circuit depth.
arXiv Detail & Related papers (2021-01-19T19:00:23Z) - Quantum-enhanced analysis of discrete stochastic processes [0.8057006406834467]
We propose a quantum algorithm for calculating the characteristic function of a Discrete processes (DSP)
It completely defines its probability distribution, using the number of quantum circuit elements that grows only linearly with the number of time steps.
The algorithm takes all trajectories into account and hence eliminates the need of importance sampling.
arXiv Detail & Related papers (2020-08-14T16:07:35Z) - Realistic simulation of quantum computation using unitary and
measurement channels [1.406995367117218]
We introduce a new simulation approach that relies on approximating the density matrix evolution by a sum of unitary and measurement channels.
This model shows an improvement of at least one order of magnitude in terms of accuracy compared to the best known approaches.
arXiv Detail & Related papers (2020-05-13T14:29:18Z) - Efficient classical simulation of random shallow 2D quantum circuits [104.50546079040298]
Random quantum circuits are commonly viewed as hard to simulate classically.
We show that approximate simulation of typical instances is almost as hard as exact simulation.
We also conjecture that sufficiently shallow random circuits are efficiently simulable more generally.
arXiv Detail & Related papers (2019-12-31T19:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.