Understanding and Mitigating Annotation Bias in Facial Expression
Recognition
- URL: http://arxiv.org/abs/2108.08504v1
- Date: Thu, 19 Aug 2021 05:28:07 GMT
- Title: Understanding and Mitigating Annotation Bias in Facial Expression
Recognition
- Authors: Yunliang Chen, Jungseock Joo
- Abstract summary: Most existing works assume that human-generated annotations can be considered gold-standard and unbiased.
We focus on facial expression recognition and compare the label biases between lab-controlled and in-the-wild datasets.
We propose an AU-Calibrated Facial Expression Recognition framework that utilizes facial action units (AUs) and incorporates the triplet loss into the objective function.
- Score: 3.325054486984015
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The performance of a computer vision model depends on the size and quality of
its training data. Recent studies have unveiled previously-unknown composition
biases in common image datasets which then lead to skewed model outputs, and
have proposed methods to mitigate these biases. However, most existing works
assume that human-generated annotations can be considered gold-standard and
unbiased. In this paper, we reveal that this assumption can be problematic, and
that special care should be taken to prevent models from learning such
annotation biases. We focus on facial expression recognition and compare the
label biases between lab-controlled and in-the-wild datasets. We demonstrate
that many expression datasets contain significant annotation biases between
genders, especially when it comes to the happy and angry expressions, and that
traditional methods cannot fully mitigate such biases in trained models. To
remove expression annotation bias, we propose an AU-Calibrated Facial
Expression Recognition (AUC-FER) framework that utilizes facial action units
(AUs) and incorporates the triplet loss into the objective function.
Experimental results suggest that the proposed method is more effective in
removing expression annotation bias than existing techniques.
Related papers
- Say My Name: a Model's Bias Discovery Framework [18.887645415907166]
We introduce Say My Name'' (SaMyNa), the first tool to identify biases within deep models semantically.
Unlike existing methods, our approach focuses on biases learned by the model.
Our method can disentangle task-related information and proposes itself as a tool to analyze biases.
arXiv Detail & Related papers (2024-08-18T18:50:59Z) - Dataset Scale and Societal Consistency Mediate Facial Impression Bias in Vision-Language AI [17.101569078791492]
We study 43 CLIP vision-language models to determine whether they learn human-like facial impression biases.
We show for the first time that the the degree to which a bias is shared across a society predicts the degree to which it is reflected in a CLIP model.
arXiv Detail & Related papers (2024-08-04T08:26:58Z) - Looking at Model Debiasing through the Lens of Anomaly Detection [11.113718994341733]
Deep neural networks are sensitive to bias in the data.
We propose a new bias identification method based on anomaly detection.
We reach state-of-the-art performance on synthetic and real benchmark datasets.
arXiv Detail & Related papers (2024-07-24T17:30:21Z) - MoESD: Mixture of Experts Stable Diffusion to Mitigate Gender Bias [23.10522891268232]
We introduce a Mixture-of-Experts approach to mitigate gender bias in text-to-image models.
We show that our approach successfully mitigates gender bias while maintaining image quality.
arXiv Detail & Related papers (2024-06-25T14:59:31Z) - Less can be more: representational vs. stereotypical gender bias in facial expression recognition [3.9698529891342207]
Machine learning models can inherit biases from their training data, leading to discriminatory or inaccurate predictions.
This paper investigates the propagation of demographic biases from datasets into machine learning models.
We focus on the gender demographic component, analyzing two types of bias: representational and stereotypical.
arXiv Detail & Related papers (2024-06-25T09:26:49Z) - Debiasing Vision-Language Models via Biased Prompts [79.04467131711775]
We propose a general approach for debiasing vision-language foundation models by projecting out biased directions in the text embedding.
We show that debiasing only the text embedding with a calibrated projection matrix suffices to yield robust classifiers and fair generative models.
arXiv Detail & Related papers (2023-01-31T20:09:33Z) - General Greedy De-bias Learning [163.65789778416172]
We propose a General Greedy De-bias learning framework (GGD), which greedily trains the biased models and the base model like gradient descent in functional space.
GGD can learn a more robust base model under the settings of both task-specific biased models with prior knowledge and self-ensemble biased model without prior knowledge.
arXiv Detail & Related papers (2021-12-20T14:47:32Z) - Balancing out Bias: Achieving Fairness Through Training Reweighting [58.201275105195485]
Bias in natural language processing arises from models learning characteristics of the author such as gender and race.
Existing methods for mitigating and measuring bias do not directly account for correlations between author demographics and linguistic variables.
This paper introduces a very simple but highly effective method for countering bias using instance reweighting.
arXiv Detail & Related papers (2021-09-16T23:40:28Z) - Unravelling the Effect of Image Distortions for Biased Prediction of
Pre-trained Face Recognition Models [86.79402670904338]
We evaluate the performance of four state-of-the-art deep face recognition models in the presence of image distortions.
We have observed that image distortions have a relationship with the performance gap of the model across different subgroups.
arXiv Detail & Related papers (2021-08-14T16:49:05Z) - Balancing Biases and Preserving Privacy on Balanced Faces in the Wild [50.915684171879036]
There are demographic biases present in current facial recognition (FR) models.
We introduce our Balanced Faces in the Wild dataset to measure these biases across different ethnic and gender subgroups.
We find that relying on a single score threshold to differentiate between genuine and imposters sample pairs leads to suboptimal results.
We propose a novel domain adaptation learning scheme that uses facial features extracted from state-of-the-art neural networks.
arXiv Detail & Related papers (2021-03-16T15:05:49Z) - Learning from others' mistakes: Avoiding dataset biases without modeling
them [111.17078939377313]
State-of-the-art natural language processing (NLP) models often learn to model dataset biases and surface form correlations instead of features that target the intended task.
Previous work has demonstrated effective methods to circumvent these issues when knowledge of the bias is available.
We show a method for training models that learn to ignore these problematic correlations.
arXiv Detail & Related papers (2020-12-02T16:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.