Looking at Model Debiasing through the Lens of Anomaly Detection
- URL: http://arxiv.org/abs/2407.17449v2
- Date: Thu, 25 Jul 2024 15:33:00 GMT
- Title: Looking at Model Debiasing through the Lens of Anomaly Detection
- Authors: Vito Paolo Pastore, Massimiliano Ciranni, Davide Marinelli, Francesca Odone, Vittorio Murino,
- Abstract summary: Deep neural networks are sensitive to bias in the data.
We propose a new bias identification method based on anomaly detection.
We reach state-of-the-art performance on synthetic and real benchmark datasets.
- Score: 11.113718994341733
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is widely recognized that deep neural networks are sensitive to bias in the data. This means that during training these models are likely to learn spurious correlations between data and labels, resulting in limited generalization abilities and low performance. In this context, model debiasing approaches can be devised aiming at reducing the model's dependency on such unwanted correlations, either leveraging the knowledge of bias information or not. In this work, we focus on the latter and more realistic scenario, showing the importance of accurately predicting the bias-conflicting and bias-aligned samples to obtain compelling performance in bias mitigation. On this ground, we propose to conceive the problem of model bias from an out-of-distribution perspective, introducing a new bias identification method based on anomaly detection. We claim that when data is mostly biased, bias-conflicting samples can be regarded as outliers with respect to the bias-aligned distribution in the feature space of a biased model, thus allowing for precisely detecting them with an anomaly detection method. Coupling the proposed bias identification approach with bias-conflicting data upsampling and augmentation in a two-step strategy, we reach state-of-the-art performance on synthetic and real benchmark datasets. Ultimately, our proposed approach shows that the data bias issue does not necessarily require complex debiasing methods, given that an accurate bias identification procedure is defined.
Related papers
- A Simple Remedy for Dataset Bias via Self-Influence: A Mislabeled Sample Perspective [33.78421391776591]
In this paper, we propose a novel perspective of mislabeled sample detection.
We show that our new perspective can boost the precision of detection and rectify biased models effectively.
Our approach is complementary to existing methods, showing performance improvement even when applied to models that have already undergone recent debiasing techniques.
arXiv Detail & Related papers (2024-11-01T04:54:32Z) - Improving Bias Mitigation through Bias Experts in Natural Language
Understanding [10.363406065066538]
We propose a new debiasing framework that introduces binary classifiers between the auxiliary model and the main model.
Our proposed strategy improves the bias identification ability of the auxiliary model.
arXiv Detail & Related papers (2023-12-06T16:15:00Z) - Echoes: Unsupervised Debiasing via Pseudo-bias Labeling in an Echo
Chamber [17.034228910493056]
This paper presents experimental analyses revealing that the existing biased models overfit to bias-conflicting samples in the training data.
We propose a straightforward and effective method called Echoes, which trains a biased model and a target model with a different strategy.
Our approach achieves superior debiasing results compared to the existing baselines on both synthetic and real-world datasets.
arXiv Detail & Related papers (2023-05-06T13:13:18Z) - Kernel-Whitening: Overcome Dataset Bias with Isotropic Sentence
Embedding [51.48582649050054]
We propose a representation normalization method which aims at disentangling the correlations between features of encoded sentences.
We also propose Kernel-Whitening, a Nystrom kernel approximation method to achieve more thorough debiasing on nonlinear spurious correlations.
Experiments show that Kernel-Whitening significantly improves the performance of BERT on out-of-distribution datasets while maintaining in-distribution accuracy.
arXiv Detail & Related papers (2022-10-14T05:56:38Z) - Self-supervised debiasing using low rank regularization [59.84695042540525]
Spurious correlations can cause strong biases in deep neural networks, impairing generalization ability.
We propose a self-supervised debiasing framework potentially compatible with unlabeled samples.
Remarkably, the proposed debiasing framework significantly improves the generalization performance of self-supervised learning baselines.
arXiv Detail & Related papers (2022-10-11T08:26:19Z) - Information-Theoretic Bias Reduction via Causal View of Spurious
Correlation [71.9123886505321]
We propose an information-theoretic bias measurement technique through a causal interpretation of spurious correlation.
We present a novel debiasing framework against the algorithmic bias, which incorporates a bias regularization loss.
The proposed bias measurement and debiasing approaches are validated in diverse realistic scenarios.
arXiv Detail & Related papers (2022-01-10T01:19:31Z) - General Greedy De-bias Learning [163.65789778416172]
We propose a General Greedy De-bias learning framework (GGD), which greedily trains the biased models and the base model like gradient descent in functional space.
GGD can learn a more robust base model under the settings of both task-specific biased models with prior knowledge and self-ensemble biased model without prior knowledge.
arXiv Detail & Related papers (2021-12-20T14:47:32Z) - Don't Discard All the Biased Instances: Investigating a Core Assumption
in Dataset Bias Mitigation Techniques [19.252319300590656]
Existing techniques for mitigating dataset bias often leverage a biased model to identify biased instances.
The role of these biased instances is then reduced during the training of the main model to enhance its robustness to out-of-distribution data.
In this paper, we show that this assumption does not hold in general.
arXiv Detail & Related papers (2021-09-01T10:25:46Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
We propose a cross-sample adversarial debiasing (CSAD) method to remove the bias information misused by the target task.
The correlation measurement plays a critical role in adversarial debiasing and is conducted by a cross-sample neural mutual information estimator.
We conduct thorough experiments on publicly available datasets to validate the advantages of the proposed method over state-of-the-art approaches.
arXiv Detail & Related papers (2021-08-11T21:17:02Z) - Learning Debiased Representation via Disentangled Feature Augmentation [19.348340314001756]
This paper presents an empirical analysis revealing that training with "diverse" bias-conflicting samples is crucial for debiasing.
We propose a novel feature-level data augmentation technique in order to synthesize diverse bias-conflicting samples.
arXiv Detail & Related papers (2021-07-03T08:03:25Z) - Learning from others' mistakes: Avoiding dataset biases without modeling
them [111.17078939377313]
State-of-the-art natural language processing (NLP) models often learn to model dataset biases and surface form correlations instead of features that target the intended task.
Previous work has demonstrated effective methods to circumvent these issues when knowledge of the bias is available.
We show a method for training models that learn to ignore these problematic correlations.
arXiv Detail & Related papers (2020-12-02T16:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.