論文の概要: Blindly Assess Quality of In-the-Wild Videos via Quality-aware
Pre-training and Motion Perception
- arxiv url: http://arxiv.org/abs/2108.08505v1
- Date: Thu, 19 Aug 2021 05:29:19 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-21 01:34:15.838898
- Title: Blindly Assess Quality of In-the-Wild Videos via Quality-aware
Pre-training and Motion Perception
- Title(参考訳): 高品質な事前学習とモーション・パーセプションによるWild動画の品質評価
- Authors: Bowen Li and Weixia Zhang and Meng Tian and Guangtao Zhai and Xianpei
Wang
- Abstract要約: 本稿では,画像品質評価(IQA)データベースからの知識の伝達と,リッチな動きパターンを用いた大規模行動認識を提案する。
対象のVQAデータベース上で、混合リストワイドランキング損失関数を用いて、提案したモデルをトレーニングする。
- 参考スコア(独自算出の注目度): 32.87570883484805
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Perceptual quality assessment of the videos acquired in the wilds is of vital
importance for quality assurance of video services. The inaccessibility of
reference videos with pristine quality and the complexity of authentic
distortions pose great challenges for this kind of blind video quality
assessment (BVQA) task. Although model-based transfer learning is an effective
and efficient paradigm for the BVQA task, it remains to be a challenge to
explore what and how to bridge the domain shifts for better video
representation. In this work, we propose to transfer knowledge from image
quality assessment (IQA) databases with authentic distortions and large-scale
action recognition with rich motion patterns. We rely on both groups of data to
learn the feature extractor. We train the proposed model on the target VQA
databases using a mixed list-wise ranking loss function. Extensive experiments
on six databases demonstrate that our method performs very competitively under
both individual database and mixed database training settings. We also verify
the rationality of each component of the proposed method and explore a simple
manner for further improvement.
- Abstract(参考訳): 野生で取得したビデオの知覚的品質評価は、ビデオサービスの品質保証にとって極めて重要である。
基準映像の信頼性の欠如と、本物の歪みの複雑さは、この種の盲目映像品質評価(bvqa)タスクにとって大きな課題となる。
モデルベーストランスファー学習はBVQAタスクの効率的かつ効率的なパラダイムであるが、より優れたビデオ表現のためにドメインシフトをどのようにブリッジするかを探求することは依然として課題である。
本研究では,画像品質評価(IQA)データベースからの知識の伝達と,リッチな動きパターンを用いた大規模行動認識を提案する。
特徴抽出器を学ぶために、両方のデータグループに依存しています。
対象のVQAデータベース上で、混合リストワイドランキング損失関数を用いて提案モデルを訓練する。
6つのデータベースに対する大規模な実験により、個々のデータベースと混合データベースのトレーニング設定の両方で、我々の手法が非常に競争力があることを示した。
また,提案手法の各成分の合理性を検証し,さらなる改善に向けた簡単な方法を探る。
関連論文リスト
- VQA$^2$: Visual Question Answering for Video Quality Assessment [76.81110038738699]
ビデオ品質アセスメント(VQA)は、低レベルの視覚知覚において古典的な分野である。
画像領域における最近の研究は、視覚質問応答(VQA)が視覚的品質を著しく低レベルに評価できることを示した。
VQA2インストラクションデータセットは,ビデオ品質評価に焦点をあてた最初の視覚的質問応答インストラクションデータセットである。
VQA2シリーズは、ビデオにおける空間的時間的品質の詳細の知覚を高めるために、視覚的および運動的トークンをインターリーブする。
論文 参考訳(メタデータ) (2024-11-06T09:39:52Z) - CLIPVQA:Video Quality Assessment via CLIP [56.94085651315878]
VQA問題(CLIPVQA)に対する効率的なCLIPベースのトランスフォーマー手法を提案する。
提案したCLIPVQAは、新しい最先端のVQAパフォーマンスを実現し、既存のベンチマークVQAメソッドよりも最大で37%の汎用性を実現している。
論文 参考訳(メタデータ) (2024-07-06T02:32:28Z) - Enhancing Blind Video Quality Assessment with Rich Quality-aware Features [79.18772373737724]
ソーシャルメディアビデオの視覚的品質評価(BVQA)モデルを改善するための,シンプルだが効果的な手法を提案する。
本稿では,BIQAモデルとBVQAモデルを用いて,事前学習したブラインド画像品質評価(BIQA)から,リッチな品質認識機能について検討する。
実験により,提案モデルが3つのソーシャルメディアVQAデータセット上で最高の性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-05-14T16:32:11Z) - Analysis of Video Quality Datasets via Design of Minimalistic Video Quality Models [71.06007696593704]
BVQA(Blind Quality Assessment)は、実世界のビデオ対応メディアアプリケーションにおけるエンドユーザの視聴体験の監視と改善に不可欠である。
実験分野として、BVQAモデルの改良は、主に数個の人間の評価されたVQAデータセットに基づいて測定されている。
最小主義的BVQAモデルを用いて,VQAデータセットの第一種計算解析を行う。
論文 参考訳(メタデータ) (2023-07-26T06:38:33Z) - Towards Robust Text-Prompted Semantic Criterion for In-the-Wild Video
Quality Assessment [54.31355080688127]
コントラスト言語画像事前学習(CLIP)を用いたテキストプロンプト付きセマンティック親和性品質指標(SAQI)とそのローカライズ版(SAQI-Local)を導入する。
BVQI-Localは前例のないパフォーマンスを示し、すべてのデータセットで既存のゼロショットインデックスを少なくとも24%上回る。
我々は、異なる指標の異なる品質問題を調べるために包括的な分析を行い、設計の有効性と合理性を示す。
論文 参考訳(メタデータ) (2023-04-28T08:06:05Z) - CONVIQT: Contrastive Video Quality Estimator [63.749184706461826]
知覚ビデオ品質評価(VQA)は、多くのストリーミングおよびビデオ共有プラットフォームにおいて不可欠な要素である。
本稿では,視覚的に関連のある映像品質表現を自己指導的に学習する問題について考察する。
本研究は, 自己教師型学習を用いて, 知覚力による説得力のある表現が得られることを示す。
論文 参考訳(メタデータ) (2022-06-29T15:22:01Z) - Deep Quality Assessment of Compressed Videos: A Subjective and Objective
Study [23.3509109592315]
ビデオ符号化プロセスでは、圧縮ビデオの知覚品質を、フル参照品質評価指標により評価する。
この問題を解決するために,非参照圧縮映像品質評価アルゴリズムの設計が重要である。
本研究では,大規模圧縮映像品質データベースを構築するために,半自動ラベリング方式を採用する。
論文 参考訳(メタデータ) (2022-05-07T10:50:06Z) - Unified Quality Assessment of In-the-Wild Videos with Mixed Datasets
Training [20.288424566444224]
我々は、コンピュータビジョンアプリケーションにおいて、Wildビデオの品質を自動評価することに注力する。
品質評価モデルの性能向上のために,人間の知覚から直観を借りる。
複数のデータセットで単一のVQAモデルをトレーニングするための混合データセットトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2020-11-09T09:22:57Z) - No-Reference Image Quality Assessment via Feature Fusion and Multi-Task
Learning [29.19484863898778]
ブラインドまたはノン参照画像品質評価(NR-IQA)は基本的な問題であり、未解決であり、難しい問題である。
マルチタスク学習に基づく簡易かつ効果的な汎用的ノンリフレクション(NR)画像品質評価フレームワークを提案する。
このモデルでは、歪み型と主観的な人間のスコアを用いて画質を推定する。
論文 参考訳(メタデータ) (2020-06-06T05:04:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。