論文の概要: Improving Semi-Supervised Learning for Remaining Useful Lifetime
Estimation Through Self-Supervision
- arxiv url: http://arxiv.org/abs/2108.08721v1
- Date: Thu, 19 Aug 2021 14:42:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-20 18:18:10.385750
- Title: Improving Semi-Supervised Learning for Remaining Useful Lifetime
Estimation Through Self-Supervision
- Title(参考訳): 半監督学習の改善による自己スーパービジョンによる有用寿命推定の維持
- Authors: Tilman Krokotsch, Mirko Knaak, Clemens G\"uhmann
- Abstract要約: RUL推定は、寿命の近いマシンからのデータが稀なサーバデータ不均衡に悩まされる。
Semi-Supervised Learning (SSL)は、まだ失敗していないマシンによって生成されたラベルのないデータを組み込むことができる。
本稿では,自己教師付き事前学習に基づく新しいSSLアプローチを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: RUL estimation suffers from a server data imbalance where data from machines
near their end of life is rare. Additionally, the data produced by a machine
can only be labeled after the machine failed. Semi-Supervised Learning (SSL)
can incorporate the unlabeled data produced by machines that did not yet fail.
Previous work on SSL evaluated their approaches under unrealistic conditions
where the data near failure was still available. Even so, only moderate
improvements were made. This paper proposes a novel SSL approach based on
self-supervised pre-training. The method can outperform two competing
approaches from the literature and a supervised baseline under realistic
conditions on the NASA C-MAPSS dataset. Nevertheless, we observe degraded
performance in some circumstances and discuss possible causes.
- Abstract(参考訳): RUL推定は、寿命の近いマシンからのデータが稀なサーバデータ不均衡に悩まされる。
さらに、マシンが生成したデータは、マシンが失敗した後にのみラベル付けできる。
Semi-Supervised Learning (SSL)は、まだ失敗していないマシンによって生成されたラベルのないデータを組み込むことができる。
sslに関する以前の研究は、障害に近いデータが利用可能な非現実的な条件下でのアプローチを評価した。
それでも改善は緩やかであった。
本稿では,自己教師付き事前学習に基づく新しいSSLアプローチを提案する。
この手法は、NASA C-MAPSSデータセットの現実的な条件下で、文献と教師付きベースラインの2つの競合するアプローチより優れている。
それにもかかわらず、いくつかの状況で劣化したパフォーマンスを観察し、考えられる原因について議論する。
関連論文リスト
- A Closer Look at Benchmarking Self-Supervised Pre-training with Image Classification [51.35500308126506]
自己教師付き学習(SSL)は、データ自体が監視を提供する機械学習アプローチであり、外部ラベルの必要性を排除している。
SSLの分類に基づく評価プロトコルがどのように相関し、異なるデータセットのダウンストリーム性能を予測するかを検討する。
論文 参考訳(メタデータ) (2024-07-16T23:17:36Z) - Progressive Feature Adjustment for Semi-supervised Learning from
Pretrained Models [39.42802115580677]
半教師付き学習(SSL)はラベル付きデータとラベルなしデータの両方を利用して予測モデルを構築することができる。
近年の文献では、事前訓練されたモデルで最先端のSSLを適用しても、トレーニングデータの潜在能力を最大限に発揮できないことが示唆されている。
本稿では,ラベルの誤りに敏感でない特徴抽出器を更新するために,非ラベルデータから擬似ラベルを使用することを提案する。
論文 参考訳(メタデータ) (2023-09-09T01:57:14Z) - Benchmark for Uncertainty & Robustness in Self-Supervised Learning [0.0]
セルフ・スーパーバイザード・ラーニングは現実世界のアプリケーション、特に医療や自動運転車のようなデータ・ハングリーな分野に不可欠である。
本稿では Jigsaw Puzzles, Context, Rotation, Geometric Transformations Prediction for vision や BERT や GPT for Language Task など,SSL メソッドの変種について検討する。
我々のゴールは、実験から出力されたベンチマークを作成し、信頼性のある機械学習で新しいSSLメソッドの出発点を提供することです。
論文 参考訳(メタデータ) (2022-12-23T15:46:23Z) - An Embarrassingly Simple Baseline for Imbalanced Semi-Supervised
Learning [103.65758569417702]
半教師付き学習(SSL)は、ラベルのないデータを活用してモデルのパフォーマンスを向上させるという大きな約束を示している。
我々は、ラベル付きデータとラベルなしデータの両方で不均衡なクラス分散が発生する不均衡SSLという、より現実的で困難な設定について検討する。
我々は、ラベル付きデータを擬似ラベルで単純に補うことで、データの不均衡に取り組む単純なベースライン、SimiSについて研究する。
論文 参考訳(メタデータ) (2022-11-20T21:18:41Z) - Self-supervised Learning for Label-Efficient Sleep Stage Classification:
A Comprehensive Evaluation [13.895332825128076]
自己教師付き学習(SSL)パラダイムは、ラベル付きデータの不足を克服する最も成功したテクニックの1つとして輝いている。
本稿では,少数レーベル体制における既存のSSCモデルの性能向上のためのSSLの有効性を評価する。
ラベル付きデータのわずか5%で事前学習したSSCモデルを微調整することで、フルラベルによる教師付きトレーニングと競合する性能が得られることがわかった。
論文 参考訳(メタデータ) (2022-10-10T09:01:17Z) - MaxMatch: Semi-Supervised Learning with Worst-Case Consistency [149.03760479533855]
半教師付き学習(SSL)のための最悪ケース整合正則化手法を提案する。
本稿では,ラベル付きトレーニングデータとラベル付きトレーニングデータとを別々に比較した経験的損失項からなるSSLの一般化について述べる。
この境界によって動機づけられたSSLの目的は、元のラベルのないサンプルと、その複数の拡張版との最大の矛盾を最小限に抑えるものである。
論文 参考訳(メタデータ) (2022-09-26T12:04:49Z) - Robust Deep Semi-Supervised Learning: A Brief Introduction [63.09703308309176]
半教師付き学習(SSL)は、ラベルが不十分なときにラベル付きデータを活用することにより、学習性能を向上させることを目的としている。
ディープモデルによるSSLは、標準ベンチマークタスクで成功したことが証明されている。
しかし、それらは現実世界のアプリケーションにおける様々な堅牢性に対する脅威に対して依然として脆弱である。
論文 参考訳(メタデータ) (2022-02-12T04:16:41Z) - Self-supervised Learning is More Robust to Dataset Imbalance [65.84339596595383]
データセット不均衡下での自己教師型学習について検討する。
既製の自己教師型表現は、教師型表現よりもクラス不均衡に対してすでに堅牢である。
我々は、不均衡なデータセット上でSSL表現品質を一貫して改善する、再重み付け正規化手法を考案した。
論文 参考訳(メタデータ) (2021-10-11T06:29:56Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z) - Semi-supervised learning objectives as log-likelihoods in a generative
model of data curation [32.45282187405337]
データキュレーションの生成モデルにおいて、SSLの目的をログライクな形式として定式化する。
おもちゃのデータにベイジアンSSLの証明を与える。
論文 参考訳(メタデータ) (2020-08-13T13:50:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。