Parallel Quasi-concave set optimization: A new frontier that scales
without needing submodularity
- URL: http://arxiv.org/abs/2108.08758v1
- Date: Thu, 19 Aug 2021 15:50:41 GMT
- Title: Parallel Quasi-concave set optimization: A new frontier that scales
without needing submodularity
- Authors: Praneeth Vepakomma, Yulia Kempner, Ramesh Raskar
- Abstract summary: Class of quasi-concave set functions induced as a dual class to monotone linkage functions.
We show a potential for widespread applications via an example of diverse feature subset selection with exact global maxi-min guarantees.
- Score: 14.93584434176082
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Classes of set functions along with a choice of ground set are a bedrock to
determine and develop corresponding variants of greedy algorithms to obtain
efficient solutions for combinatorial optimization problems. The class of
approximate constrained submodular optimization has seen huge advances at the
intersection of good computational efficiency, versatility and approximation
guarantees while exact solutions for unconstrained submodular optimization are
NP-hard. What is an alternative to situations when submodularity does not hold?
Can efficient and globally exact solutions be obtained? We introduce one such
new frontier: The class of quasi-concave set functions induced as a dual class
to monotone linkage functions. We provide a parallel algorithm with a time
complexity over $n$ processors of $\mathcal{O}(n^2g)
+\mathcal{O}(\log{\log{n}})$ where $n$ is the cardinality of the ground set and
$g$ is the complexity to compute the monotone linkage function that induces a
corresponding quasi-concave set function via a duality. The complexity reduces
to $\mathcal{O}(gn\log(n))$ on $n^2$ processors and to $\mathcal{O}(gn)$ on
$n^3$ processors. Our algorithm provides a globally optimal solution to a
maxi-min problem as opposed to submodular optimization which is approximate. We
show a potential for widespread applications via an example of diverse feature
subset selection with exact global maxi-min guarantees upon showing that a
statistical dependency measure called distance correlation can be used to
induce a quasi-concave set function.
Related papers
- Obtaining Lower Query Complexities through Lightweight Zeroth-Order Proximal Gradient Algorithms [65.42376001308064]
We propose two variance reduced ZO estimators for complex gradient problems.
We improve the state-of-the-art function complexities from $mathcalOleft(minfracdn1/2epsilon2, fracdepsilon3right)$ to $tildecalOleft(fracdepsilon2right)$.
arXiv Detail & Related papers (2024-10-03T15:04:01Z) - Practical Parallel Algorithms for Non-Monotone Submodular Maximization [20.13836086815112]
Submodular has found extensive applications in various domains within the field of artificial intelligence.
One of the parallelizability of a submodular algorithm is its adaptive complexity, which indicates the number of rounds where a number of queries to the objective function can be executed in parallel.
We propose the first algorithm with both provable approximation ratio and sub adaptive complexity for the problem of non-monotone submodepsular subject to a $k$-system.
arXiv Detail & Related papers (2023-08-21T11:48:34Z) - Linear Query Approximation Algorithms for Non-monotone Submodular
Maximization under Knapsack Constraint [16.02833173359407]
This work introduces two constant factor approximation algorithms with linear query complexity for non-monotone submodular over a ground set of size $n$ subject to a knapsack constraint.
$mathsfDLA$ is a deterministic algorithm that provides an approximation factor of $6+epsilon$ while $mathsfRLA$ is a randomized algorithm with an approximation factor of $4+epsilon$.
arXiv Detail & Related papers (2023-05-17T15:27:33Z) - Multi-block-Single-probe Variance Reduced Estimator for Coupled
Compositional Optimization [49.58290066287418]
We propose a novel method named Multi-block-probe Variance Reduced (MSVR) to alleviate the complexity of compositional problems.
Our results improve upon prior ones in several aspects, including the order of sample complexities and dependence on strongity.
arXiv Detail & Related papers (2022-07-18T12:03:26Z) - Submodular + Concave [53.208470310734825]
It has been well established that first order optimization methods can converge to the maximal objective value of concave functions.
In this work, we initiate the determinant of the smooth functions convex body $$F(x) = G(x) +C(x)$.
This class of functions is an extension of both concave and continuous DR-submodular functions for which no guarantee is known.
arXiv Detail & Related papers (2021-06-09T01:59:55Z) - Submodular Maximization subject to a Knapsack Constraint: Combinatorial
Algorithms with Near-optimal Adaptive Complexity [13.416309759182635]
We obtain the first constant approximation for non-monotone submodular algorithms with near-optimal $O(log n)$ adaptive complexity.
Our algorithm asks $tildeO(n2)$ value queries, but can be modified to run with only $tildeO(n)$ instead.
This is also the first approach with sublinear adaptive complexity for the problem and yields comparable to the state-of-the-art even for special cases of cardinality constraints or monotone objectives.
arXiv Detail & Related papers (2021-02-16T18:15:51Z) - Adaptive Sampling for Fast Constrained Maximization of Submodular
Function [8.619758302080891]
We develop an algorithm with poly-logarithmic adaptivity for non-monotone submodular under general side constraints.
Our algorithm is suitable to maximize a non-monotone submodular function under a $p$-system side constraint.
arXiv Detail & Related papers (2021-02-12T12:38:03Z) - Finding Global Minima via Kernel Approximations [90.42048080064849]
We consider the global minimization of smooth functions based solely on function evaluations.
In this paper, we consider an approach that jointly models the function to approximate and finds a global minimum.
arXiv Detail & Related papers (2020-12-22T12:59:30Z) - Online Model Selection for Reinforcement Learning with Function
Approximation [50.008542459050155]
We present a meta-algorithm that adapts to the optimal complexity with $tildeO(L5/6 T2/3)$ regret.
We also show that the meta-algorithm automatically admits significantly improved instance-dependent regret bounds.
arXiv Detail & Related papers (2020-11-19T10:00:54Z) - Practical and Parallelizable Algorithms for Non-Monotone Submodular
Maximization with Size Constraint [20.104148319012854]
We present and parallelizable for a submodular function, not necessarily a monotone, with respect to a size constraint.
We improve the best approximation factor achieved by an algorithm that has optimal adaptivity and nearly optimal complexity query to $0.193 - varepsilon$.
arXiv Detail & Related papers (2020-09-03T22:43:55Z) - A Two-Timescale Framework for Bilevel Optimization: Complexity Analysis
and Application to Actor-Critic [142.1492359556374]
Bilevel optimization is a class of problems which exhibit a two-level structure.
We propose a two-timescale approximation (TTSA) algorithm for tackling such a bilevel problem.
We show that a two-timescale natural actor-critic policy optimization algorithm can be viewed as a special case of our TTSA framework.
arXiv Detail & Related papers (2020-07-10T05:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.