Learning-to-learn non-convex piecewise-Lipschitz functions
- URL: http://arxiv.org/abs/2108.08770v1
- Date: Thu, 19 Aug 2021 16:22:48 GMT
- Title: Learning-to-learn non-convex piecewise-Lipschitz functions
- Authors: Maria-Florina Balcan, Mikhail Khodak, Dravyansh Sharma, Ameet
Talwalkar
- Abstract summary: We analyze the meta-learning of the algorithms for piecewise-Lipschitz functions, a non-task with applications to both machine learning algorithms.
We propose a practical meta-learning procedure that learns both the step-size of the algorithm from multiple online learning tasks.
- Score: 44.6133187924678
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We analyze the meta-learning of the initialization and step-size of learning
algorithms for piecewise-Lipschitz functions, a non-convex setting with
applications to both machine learning and algorithms. Starting from recent
regret bounds for the exponential forecaster on losses with dispersed
discontinuities, we generalize them to be initialization-dependent and then use
this result to propose a practical meta-learning procedure that learns both the
initialization and the step-size of the algorithm from multiple online learning
tasks. Asymptotically, we guarantee that the average regret across tasks scales
with a natural notion of task-similarity that measures the amount of overlap
between near-optimal regions of different tasks. Finally, we instantiate the
method and its guarantee in two important settings: robust meta-learning and
multi-task data-driven algorithm design.
Related papers
- Continual Learning of Numerous Tasks from Long-tail Distributions [17.706669222987273]
Continual learning focuses on developing models that learn and adapt to new tasks while retaining previously acquired knowledge.
Existing continual learning algorithms usually involve a small number of tasks with uniform sizes and may not accurately represent real-world learning scenarios.
We propose a method that reuses the states in Adam by maintaining a weighted average of the second moments from previous tasks.
We demonstrate that our method, compatible with most existing continual learning algorithms, effectively reduces forgetting with only a small amount of additional computational or memory costs.
arXiv Detail & Related papers (2024-04-03T13:56:33Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Multi-Task Learning with Prior Information [5.770309971945476]
We propose a multi-task learning framework, where we utilize prior knowledge about the relations between features.
We also impose a penalty on the coefficients changing for each specific feature to ensure related tasks have similar coefficients on common features shared among them.
arXiv Detail & Related papers (2023-01-04T12:48:05Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Algorithms that Approximate Data Removal: New Results and Limitations [2.6905021039717987]
We study the problem of deleting user data from machine learning models trained using empirical risk minimization.
We develop an online unlearning algorithm that is both computationally and memory efficient.
arXiv Detail & Related papers (2022-09-25T17:20:33Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
This work proposes an exploration variant of the basic $Q$-learning protocol with linear function approximation.
We show that the performance of the algorithm degrades very gracefully under a novel and more permissive notion of approximation error.
arXiv Detail & Related papers (2022-06-01T23:26:51Z) - Multi-task Supervised Learning via Cross-learning [102.64082402388192]
We consider a problem known as multi-task learning, consisting of fitting a set of regression functions intended for solving different tasks.
In our novel formulation, we couple the parameters of these functions, so that they learn in their task specific domains while staying close to each other.
This facilitates cross-fertilization in which data collected across different domains help improving the learning performance at each other task.
arXiv Detail & Related papers (2020-10-24T21:35:57Z) - Meta-learning with Stochastic Linear Bandits [120.43000970418939]
We consider a class of bandit algorithms that implement a regularized version of the well-known OFUL algorithm, where the regularization is a square euclidean distance to a bias vector.
We show both theoretically and experimentally, that when the number of tasks grows and the variance of the task-distribution is small, our strategies have a significant advantage over learning the tasks in isolation.
arXiv Detail & Related papers (2020-05-18T08:41:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.