Algorithms that Approximate Data Removal: New Results and Limitations
- URL: http://arxiv.org/abs/2209.12269v1
- Date: Sun, 25 Sep 2022 17:20:33 GMT
- Title: Algorithms that Approximate Data Removal: New Results and Limitations
- Authors: Vinith M. Suriyakumar, Ashia C. Wilson
- Abstract summary: We study the problem of deleting user data from machine learning models trained using empirical risk minimization.
We develop an online unlearning algorithm that is both computationally and memory efficient.
- Score: 2.6905021039717987
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the problem of deleting user data from machine learning models
trained using empirical risk minimization. Our focus is on learning algorithms
which return the empirical risk minimizer and approximate unlearning algorithms
that comply with deletion requests that come streaming minibatches. Leveraging
the infintesimal jacknife, we develop an online unlearning algorithm that is
both computationally and memory efficient. Unlike prior memory efficient
unlearning algorithms, we target models that minimize objectives with
non-smooth regularizers, such as the commonly used $\ell_1$, elastic net, or
nuclear norm penalties. We also provide generalization, deletion capacity, and
unlearning guarantees that are consistent with state of the art methods. Across
a variety of benchmark datasets, our algorithm empirically improves upon the
runtime of prior methods while maintaining the same memory requirements and
test accuracy. Finally, we open a new direction of inquiry by proving that all
approximate unlearning algorithms introduced so far fail to unlearn in problem
settings where common hyperparameter tuning methods, such as cross-validation,
have been used to select models.
Related papers
- Meta-Learning from Learning Curves for Budget-Limited Algorithm Selection [11.409496019407067]
In a budget-limited scenario, it is crucial to carefully select an algorithm candidate and allocate a budget for training it.
We propose a novel framework in which an agent must select in the process of learning the most promising algorithm without waiting until it is fully trained.
arXiv Detail & Related papers (2024-10-10T08:09:58Z) - Neural Algorithmic Reasoning Without Intermediate Supervision [21.852775399735005]
We focus on learning neural algorithmic reasoning only from the input-output pairs without appealing to the intermediate supervision.
We build a self-supervised objective that can regularise intermediate computations of the model without access to the algorithm trajectory.
We demonstrate that our approach is competitive to its trajectory-supervised counterpart on tasks from the CLRSic Algorithmic Reasoning Benchmark.
arXiv Detail & Related papers (2023-06-23T09:57:44Z) - Towards Diverse Evaluation of Class Incremental Learning: A Representation Learning Perspective [67.45111837188685]
Class incremental learning (CIL) algorithms aim to continually learn new object classes from incrementally arriving data.
We experimentally analyze neural network models trained by CIL algorithms using various evaluation protocols in representation learning.
arXiv Detail & Related papers (2022-06-16T11:44:11Z) - Implicit Parameter-free Online Learning with Truncated Linear Models [51.71216912089413]
parameter-free algorithms are online learning algorithms that do not require setting learning rates.
We propose new parameter-free algorithms that can take advantage of truncated linear models through a new update that has an "implicit" flavor.
Based on a novel decomposition of the regret, the new update is efficient, requires only one gradient at each step, never overshoots the minimum of the truncated model, and retains the favorable parameter-free properties.
arXiv Detail & Related papers (2022-03-19T13:39:49Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
In online algorithm selection (OAS), instances of an algorithmic problem class are presented to an agent one after another, and the agent has to quickly select a presumably best algorithm from a fixed set of candidate algorithms.
For decision problems such as satisfiability (SAT), quality typically refers to the algorithm's runtime.
In this work, we revisit multi-armed bandit algorithms for OAS and discuss their capability of dealing with the problem.
We adapt them towards runtime-oriented losses, allowing for partially censored data while keeping a space- and time-complexity independent of the time horizon.
arXiv Detail & Related papers (2021-09-13T18:10:52Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
We propose a method for meta-learning reinforcement learning algorithms.
The learned algorithms are domain-agnostic and can generalize to new environments not seen during training.
We highlight two learned algorithms which obtain good generalization performance over other classical control tasks, gridworld type tasks, and Atari games.
arXiv Detail & Related papers (2021-01-08T18:55:07Z) - Optimization for Supervised Machine Learning: Randomized Algorithms for
Data and Parameters [10.279748604797911]
Key problems in machine learning and data science are routinely modeled as optimization problems and solved via optimization algorithms.
With the increase of the volume of data and the size and complexity of the statistical models used to formulate these often ill-conditioned optimization tasks, there is a need for new efficient algorithms able to cope with these challenges.
In this thesis, we deal with each of these sources of difficulty in a different way. To efficiently address the big data issue, we develop new methods which in each iteration examine a small random subset of the training data only.
To handle the big model issue, we develop methods which in each iteration update
arXiv Detail & Related papers (2020-08-26T21:15:18Z) - Learning and Planning in Average-Reward Markov Decision Processes [15.586087060535398]
We introduce learning and planning algorithms for average-reward MDPs.
All of our algorithms are based on using the temporal-difference error rather than the conventional error when updating the estimate of the average reward.
arXiv Detail & Related papers (2020-06-29T19:03:24Z) - Provably Robust Metric Learning [98.50580215125142]
We show that existing metric learning algorithms can result in metrics that are less robust than the Euclidean distance.
We propose a novel metric learning algorithm to find a Mahalanobis distance that is robust against adversarial perturbations.
Experimental results show that the proposed metric learning algorithm improves both certified robust errors and empirical robust errors.
arXiv Detail & Related papers (2020-06-12T09:17:08Z) - Meta-learning with Stochastic Linear Bandits [120.43000970418939]
We consider a class of bandit algorithms that implement a regularized version of the well-known OFUL algorithm, where the regularization is a square euclidean distance to a bias vector.
We show both theoretically and experimentally, that when the number of tasks grows and the variance of the task-distribution is small, our strategies have a significant advantage over learning the tasks in isolation.
arXiv Detail & Related papers (2020-05-18T08:41:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.