論文の概要: Deep Sequence Modeling: Development and Applications in Asset Pricing
- arxiv url: http://arxiv.org/abs/2108.08999v1
- Date: Fri, 20 Aug 2021 04:40:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-23 13:16:13.059479
- Title: Deep Sequence Modeling: Development and Applications in Asset Pricing
- Title(参考訳): ディープシーケンスモデリング:アセット価格における開発と応用
- Authors: Lin William Cong, Ke Tang, Jingyuan Wang, Yang Zhang
- Abstract要約: 我々は資産のリターンを予測し、人工知能の卓越した技術であるディープシークエンス・モデリングを用いてリスク・プレミアを測定する。
資産の返却は、しばしば従来の時系列モデルでは効果的に捉えられないシーケンシャルな依存を示すため、シーケンスモデリングはデータ駆動アプローチと優れたパフォーマンスで有望な経路を提供する。
- 参考スコア(独自算出の注目度): 35.027865343844766
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We predict asset returns and measure risk premia using a prominent technique
from artificial intelligence -- deep sequence modeling. Because asset returns
often exhibit sequential dependence that may not be effectively captured by
conventional time series models, sequence modeling offers a promising path with
its data-driven approach and superior performance. In this paper, we first
overview the development of deep sequence models, introduce their applications
in asset pricing, and discuss their advantages and limitations. We then perform
a comparative analysis of these methods using data on U.S. equities. We
demonstrate how sequence modeling benefits investors in general through
incorporating complex historical path dependence, and that Long- and Short-term
Memory (LSTM) based models tend to have the best out-of-sample performance.
- Abstract(参考訳): 我々はアセットリターンを予測し,人工知能の顕著な手法である深部シーケンスモデリングを用いてリスク・プレアミアを計測する。
資産の返却は、しばしば従来の時系列モデルでは効果的に捉えられないシーケンシャルな依存を示すため、シーケンスモデリングはデータ駆動アプローチと優れたパフォーマンスで有望な経路を提供する。
本稿では,まず,深層シーケンスモデルの開発を概観し,それらの応用を資産価格で紹介し,その利点と限界について論じる。
次に、米国株のデータを用いて、これらの手法の比較分析を行う。
我々は、複雑な履歴パス依存を取り入れたシーケンスモデリングが投資家全般にどのような恩恵をもたらすかを実証し、LSTM(Long- and Short-term Memory)ベースのモデルが最高のアウト・オブ・サンプル性能を持つことを示した。
関連論文リスト
- Cross-Modal Fine-Tuning: Align then Refine [83.37294254884446]
ORCAはクロスモーダルな微調整フレームワークであり、単一の大規模事前訓練モデルの適用範囲を様々に拡張する。
ORCAは12のモダリティから60以上のデータセットを含む3つのベンチマークで最先端の結果を得る。
論文 参考訳(メタデータ) (2023-02-11T16:32:28Z) - Temporal Relevance Analysis for Video Action Models [70.39411261685963]
まず,CNNに基づく行動モデルにより捉えたフレーム間の時間的関係を定量化する手法を提案する。
次に、時間的モデリングがどのように影響を受けるかをよりよく理解するために、包括的な実験と詳細な分析を行います。
論文 参考訳(メタデータ) (2022-04-25T19:06:48Z) - Sample Efficient Reinforcement Learning via Model-Ensemble Exploration
and Exploitation [3.728946517493471]
MEEEは楽観的な探索と重み付けによる搾取からなるモデルアンサンブル法である。
我々の手法は、特にサンプル複雑性において、他のモデルフリーおよびモデルベース最先端手法よりも優れています。
論文 参考訳(メタデータ) (2021-07-05T07:18:20Z) - Autoregressive Dynamics Models for Offline Policy Evaluation and
Optimization [60.73540999409032]
表現的自己回帰ダイナミクスモデルが次の状態の異なる次元を生成し、以前の次元で順次条件付きで報酬を得ることを示す。
また,リプレイバッファを充実させる手段として,自己回帰的ダイナミクスモデルがオフラインポリシー最適化に有用であることを示す。
論文 参考訳(メタデータ) (2021-04-28T16:48:44Z) - Adversarial and Contrastive Variational Autoencoder for Sequential
Recommendation [25.37244686572865]
本稿では、逐次レコメンデーションのためのAdversarial and Contrastive Variational Autoencoder (ACVAE) と呼ばれる新しい手法を提案する。
まず,本モデルが高品質な潜在変数を生成することを可能にするadversarial variational bayesフレームワークの下で,シーケンス生成のためのadversarial trainingを導入する。
さらに、シーケンスをエンコードする場合、シーケンス内のグローバルおよびローカルの関係をキャプチャするために、繰り返しおよび畳み込み構造を適用します。
論文 参考訳(メタデータ) (2021-03-19T09:01:14Z) - Parsimonious Quantile Regression of Financial Asset Tail Dynamics via
Sequential Learning [35.34574502348672]
本稿では、金融資産返却の動的テール挙動を学習するための擬似量子回帰フレームワークを提案する。
本モデルは,財務時系列の時間変化特性と非対称ヘビーテール特性の両方をよく捉えている。
論文 参考訳(メタデータ) (2020-10-16T09:35:52Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
本稿では,シーケンスレコメンデーションのための自己改善学習のためのモデルS3-Recを提案する。
そこで本稿では,属性,項目,サブシーケンス,シーケンス間の相関関係を学習するために,4つの補助的自己教師対象を考案する。
6つの実世界のデータセットで実施された大規模な実験は、既存の最先端手法よりも提案手法が優れていることを示す。
論文 参考訳(メタデータ) (2020-08-18T11:44:10Z) - Modeling Financial Time Series using LSTM with Trainable Initial Hidden
States [0.0]
本稿では,ディープラーニングモデルを用いた金融時系列のモデリング手法を提案する。
トレーニング可能な初期隠れ状態を備えたLong Short-Term Memory (LSTM) ネットワークを使用する。
論文 参考訳(メタデータ) (2020-07-14T06:36:10Z) - Transformer Hawkes Process [79.16290557505211]
本稿では,長期的依存関係を捕捉する自己認識機構を利用したTransformer Hawkes Process (THP) モデルを提案する。
THPは、有意なマージンによる可能性と事象予測の精度の両方の観点から、既存のモデルより優れている。
本稿では、THPが関係情報を組み込む際に、複数の点過程を学習する際の予測性能の改善を実現する具体例を示す。
論文 参考訳(メタデータ) (2020-02-21T13:48:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。