論文の概要: Pixel Contrastive-Consistent Semi-Supervised Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2108.09025v1
- Date: Fri, 20 Aug 2021 07:04:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-23 13:27:21.553320
- Title: Pixel Contrastive-Consistent Semi-Supervised Semantic Segmentation
- Title(参考訳): Pixel Contrastive-Consistent Semi-Supervised Semantic Segmentation
- Authors: Yuanyi Zhong, Bodi Yuan, Hong Wu, Zhiqiang Yuan, Jian Peng, Yu-Xiong
Wang
- Abstract要約: セグメンテーションモデル正規性の2つのデシラタを共同で達成する半教師付きセグメンテーション手法を提案する。
画素レベルL2損失と画素コントラスト損失をそれぞれ2つの目的に活用する。
- 参考スコア(独自算出の注目度): 22.920856071095915
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel semi-supervised semantic segmentation method which jointly
achieves two desiderata of segmentation model regularities: the label-space
consistency property between image augmentations and the feature-space
contrastive property among different pixels. We leverage the pixel-level L2
loss and the pixel contrastive loss for the two purposes respectively. To
address the computational efficiency issue and the false negative noise issue
involved in the pixel contrastive loss, we further introduce and investigate
several negative sampling techniques. Extensive experiments demonstrate the
state-of-the-art performance of our method (PC2Seg) with the DeepLab-v3+
architecture, in several challenging semi-supervised settings derived from the
VOC, Cityscapes, and COCO datasets.
- Abstract(参考訳): 本稿では,画像拡張間のラベル空間一貫性特性と異なる画素間の特徴空間コントラスト特性という,セグメンテーションモデルの正則性の2つのデシデラタを共同で達成した,新しい半教師付き意味セグメンテーション法を提案する。
画素レベルL2損失と画素コントラスト損失をそれぞれ2つの目的に活用する。
ピクセルのコントラスト損失に関わる計算効率問題と偽負ノイズ問題に対処するため、さらにいくつかの負サンプリング手法を紹介し、検討する。
大規模な実験では、VOC、Cityscapes、COCOデータセットから派生したいくつかの挑戦的な半教師付き設定において、DeepLab-v3+アーキテクチャによる手法(PC2Seg)の最先端性能を実証している。
関連論文リスト
- Learning Invariant Inter-pixel Correlations for Superpixel Generation [12.605604620139497]
学習可能な特徴は、制約付き判別能力を示し、不満足なピクセルグループ化性能をもたらす。
本稿では,不変画素間相関と統計特性を選択的に分離するContentangle Superpixelアルゴリズムを提案する。
4つのベンチマークデータセットの実験結果は、既存の最先端手法に対するアプローチの優位性を示している。
論文 参考訳(メタデータ) (2024-02-28T09:46:56Z) - Pixel-Level Clustering Network for Unsupervised Image Segmentation [3.69853388955692]
画像の領域分割のためのピクセルレベルのクラスタリングフレームワークを,地上の真理アノテーションを使わずに提案する。
また、各スーパーピクセル間の一貫性、隣接するスーパーピクセル間の相似性/相似性、画像間の構造的類似性を利用したトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2023-10-24T23:06:29Z) - Pixel-Inconsistency Modeling for Image Manipulation Localization [59.968362815126326]
デジタル画像法医学は、画像認証と操作のローカライゼーションにおいて重要な役割を果たす。
本稿では,画素不整合アーチファクトの解析を通じて,一般化されたロバストな操作ローカライゼーションモデルを提案する。
実験により,本手法は固有の画素不整合偽指紋を抽出することに成功した。
論文 参考訳(メタデータ) (2023-09-30T02:54:51Z) - Deep Semantic Statistics Matching (D2SM) Denoising Network [70.01091467628068]
本稿では,Deep Semantic Statistics Matching (D2SM) Denoising Networkを紹介する。
事前訓練された分類ネットワークの意味的特徴を利用して、意味的特徴空間における明瞭な画像の確率的分布と暗黙的に一致させる。
識別画像のセマンティックな分布を学習することで,ネットワークの認知能力を大幅に向上させることを実証的に見出した。
論文 参考訳(メタデータ) (2022-07-19T14:35:42Z) - Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast [43.40192909920495]
クロスビュー特徴のセマンティック一貫性とイントラ(インター)クラスのコンパクト性(分散)について検討した。
本稿では,2つの新しい画素対プロトタイプのコントラスト正規化用語を提案する。
我々の手法は、ベースネットワークを変更することなく、既存のWSSSモデルにシームレスに組み込むことができる。
論文 参考訳(メタデータ) (2021-10-14T01:44:57Z) - Superpixel-guided Discriminative Low-rank Representation of
Hyperspectral Images for Classification [49.32130776974202]
SP-DLRRは2つのモジュール、すなわち分類誘導スーパーピクセルセグメンテーションと識別低ランク表現で構成されている。
3つのベンチマークデータセットの実験結果から,SP-DLRRが最先端手法よりも有意な優位性を示した。
論文 参考訳(メタデータ) (2021-08-25T10:47:26Z) - Semi-supervised Semantic Segmentation with Directional Context-aware
Consistency [66.49995436833667]
我々は、ラベル付きデータの小さなセットに、全くラベル付けされていない画像のより大きなコレクションを提供する半教師付きセグメンテーション問題に焦点をあてる。
好ましいハイレベル表現は、自己認識を失わずにコンテキスト情報をキャプチャするべきである。
我々は,DCロス(Directional Contrastive Loss)を画素対ピクセルの整合性を達成するために提示する。
論文 参考訳(メタデータ) (2021-06-27T03:42:40Z) - Railroad is not a Train: Saliency as Pseudo-pixel Supervision for Weakly
Supervised Semantic Segmentation [16.560870740946275]
EPS (Explicit Pseudo-Pixel Supervision) は2つの弱い監督と組み合わせることでピクセルレベルのフィードバックから学習する。
両情報間の補完関係を完全に活用するための共同学習戦略を考案する。
提案手法は, 正確なオブジェクト境界を求め, 共起画素を破棄することにより, 擬似マスクの品質を大幅に向上させることができる。
論文 参考訳(メタデータ) (2021-05-19T07:31:11Z) - InverseForm: A Loss Function for Structured Boundary-Aware Segmentation [80.39674800972182]
逆変換ネットワークを用いたセマンティックセグメンテーションのための新しい境界認識損失項を提案する。
このプラグイン損失項は境界変換の捕捉におけるクロスエントロピー損失を補完する。
室内および屋外のセグメンテーションベンチマークにおける損失関数の定量的および定性的効果を解析した。
論文 参考訳(メタデータ) (2021-04-06T18:52:45Z) - Improving Image co-segmentation via Deep Metric Learning [1.5076964620370268]
本稿では,IS-Triplet Los for Shortという,画像のトリプレットロスを新たに提案し,従来の画像分割損失と組み合わせた。
提案手法を画像共同分割に適用し,SBCosegデータセットとインターネットデータセット上でテストする。
論文 参考訳(メタデータ) (2021-03-19T07:30:42Z) - Superpixel Segmentation Based on Spatially Constrained Subspace
Clustering [57.76302397774641]
独立意味情報を持つ各代表領域を部分空間とみなし,部分空間クラスタリング問題としてスーパーピクセルセグメンテーションを定式化する。
従来のサブスペースクラスタリングとスーパーピクセルセグメンテーションの簡単な統合は,画素の空間相関のために効果的に機能しないことを示す。
本稿では,空間隣接画素に類似の属性を付加してスーパーピクセルにクラスタリング可能な,凸局所性制約付きサブスペースクラスタリングモデルを提案する。
論文 参考訳(メタデータ) (2020-12-11T06:18:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。