Self-supervised learning for joint SAR and multispectral land cover
classification
- URL: http://arxiv.org/abs/2108.09075v1
- Date: Fri, 20 Aug 2021 09:02:07 GMT
- Title: Self-supervised learning for joint SAR and multispectral land cover
classification
- Authors: Antonio Montanaro, Diego Valsesia, Giulia Fracastoro, Enrico Magli
- Abstract summary: We present a framework and specific tasks for self-supervised training of multichannel models.
We show that the proposed self-supervised approach is highly effective at learning features that correlate with the labels for land cover classification.
- Score: 38.8529535887097
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Self-supervised learning techniques are gaining popularity due to their
capability of building models that are effective, even when scarce amounts of
labeled data are available. In this paper, we present a framework and specific
tasks for self-supervised training of multichannel models, such as the fusion
of multispectral and synthetic aperture radar images. We show that the proposed
self-supervised approach is highly effective at learning features that
correlate with the labels for land cover classification. This is enabled by an
explicit design of pretraining tasks which promotes bridging the gaps between
sensing modalities and exploiting the spectral characteristics of the input.
When limited labels are available, using the proposed self-supervised
pretraining and supervised finetuning for land cover classification with SAR
and multispectral data outperforms conventional approaches such as purely
supervised learning, initialization from training on Imagenet and recent
self-supervised approaches for computer vision tasks.
Related papers
- Efficient Prompt Tuning of Large Vision-Language Model for Fine-Grained
Ship Classification [62.425462136772666]
Fine-grained ship classification in remote sensing (RS-FGSC) poses a significant challenge due to the high similarity between classes and the limited availability of labeled data.
Recent advancements in large pre-trained Vision-Language Models (VLMs) have demonstrated impressive capabilities in few-shot or zero-shot learning.
This study delves into harnessing the potential of VLMs to enhance classification accuracy for unseen ship categories.
arXiv Detail & Related papers (2024-03-13T05:48:58Z) - A Bayesian Unification of Self-Supervised Clustering and Energy-Based
Models [11.007541337967027]
We perform a Bayesian analysis of state-of-the-art self-supervised learning objectives.
We show that our objective function allows to outperform existing self-supervised learning strategies.
We also demonstrate that GEDI can be integrated into a neuro-symbolic framework.
arXiv Detail & Related papers (2023-12-30T04:46:16Z) - Independent Distribution Regularization for Private Graph Embedding [55.24441467292359]
Graph embeddings are susceptible to attribute inference attacks, which allow attackers to infer private node attributes from the learned graph embeddings.
To address these concerns, privacy-preserving graph embedding methods have emerged.
We propose a novel approach called Private Variational Graph AutoEncoders (PVGAE) with the aid of independent distribution penalty as a regularization term.
arXiv Detail & Related papers (2023-08-16T13:32:43Z) - In-Domain Self-Supervised Learning Improves Remote Sensing Image Scene
Classification [5.323049242720532]
Self-supervised learning has emerged as a promising approach for remote sensing image classification.
We present a study of different self-supervised pre-training strategies and evaluate their effect across 14 downstream datasets.
arXiv Detail & Related papers (2023-07-04T10:57:52Z) - Semi-supervised learning made simple with self-supervised clustering [65.98152950607707]
Self-supervised learning models have been shown to learn rich visual representations without requiring human annotations.
We propose a conceptually simple yet empirically powerful approach to turn clustering-based self-supervised methods into semi-supervised learners.
arXiv Detail & Related papers (2023-06-13T01:09:18Z) - Hyperspherical Consistency Regularization [45.00073340936437]
We explore the relationship between self-supervised learning and supervised learning, and study how self-supervised learning helps robust data-efficient deep learning.
We propose hyperspherical consistency regularization (HCR), a simple yet effective plug-and-play method, to regularize the classifier using feature-dependent information and thus avoid bias from labels.
arXiv Detail & Related papers (2022-06-02T02:41:13Z) - Self-Supervised Models are Continual Learners [79.70541692930108]
We show that self-supervised loss functions can be seamlessly converted into distillation mechanisms for Continual Learning.
We devise a framework for Continual self-supervised visual representation Learning that significantly improves the quality of the learned representations.
arXiv Detail & Related papers (2021-12-08T10:39:13Z) - Clustering augmented Self-Supervised Learning: Anapplication to Land
Cover Mapping [10.720852987343896]
We introduce a new method for land cover mapping by using a clustering based pretext task for self-supervised learning.
We demonstrate the effectiveness of the method on two societally relevant applications.
arXiv Detail & Related papers (2021-08-16T19:35:43Z) - Knowledge Distillation Meets Self-Supervision [109.6400639148393]
Knowledge distillation involves extracting "dark knowledge" from a teacher network to guide the learning of a student network.
We show that the seemingly different self-supervision task can serve as a simple yet powerful solution.
By exploiting the similarity between those self-supervision signals as an auxiliary task, one can effectively transfer the hidden information from the teacher to the student.
arXiv Detail & Related papers (2020-06-12T12:18:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.