Clustering augmented Self-Supervised Learning: Anapplication to Land
Cover Mapping
- URL: http://arxiv.org/abs/2108.07323v1
- Date: Mon, 16 Aug 2021 19:35:43 GMT
- Title: Clustering augmented Self-Supervised Learning: Anapplication to Land
Cover Mapping
- Authors: Rahul Ghosh, Xiaowei Jia, Chenxi Lin, Zhenong Jin, Vipin Kumar
- Abstract summary: We introduce a new method for land cover mapping by using a clustering based pretext task for self-supervised learning.
We demonstrate the effectiveness of the method on two societally relevant applications.
- Score: 10.720852987343896
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Collecting large annotated datasets in Remote Sensing is often expensive and
thus can become a major obstacle for training advanced machine learning models.
Common techniques of addressing this issue, based on the underlying idea of
pre-training the Deep Neural Networks (DNN) on freely available large datasets,
cannot be used for Remote Sensing due to the unavailability of such large-scale
labeled datasets and the heterogeneity of data sources caused by the varying
spatial and spectral resolution of different sensors. Self-supervised learning
is an alternative approach that learns feature representation from unlabeled
images without using any human annotations. In this paper, we introduce a new
method for land cover mapping by using a clustering based pretext task for
self-supervised learning. We demonstrate the effectiveness of the method on two
societally relevant applications from the aspect of segmentation performance,
discriminative feature representation learning and the underlying cluster
structure. We also show the effectiveness of the active sampling using the
clusters obtained from our method in improving the mapping accuracy given a
limited budget of annotating.
Related papers
- Self-Supervised Learning for User Localization [8.529237718266042]
Machine learning techniques have shown remarkable accuracy in localization tasks.
Their dependency on vast amounts of labeled data, particularly Channel State Information (CSI) and corresponding coordinates, remains a bottleneck.
We propose a pioneering approach that leverages self-supervised pretraining on unlabeled data to boost the performance of supervised learning for user localization based on CSI.
arXiv Detail & Related papers (2024-04-19T21:49:10Z) - Terrain-Informed Self-Supervised Learning: Enhancing Building Footprint Extraction from LiDAR Data with Limited Annotations [1.3243401820948064]
Building footprint maps offer promise of precise footprint extraction without extensive post-processing.
Deep learning methods face challenges in generalization and label efficiency.
We propose terrain-aware self-supervised learning tailored to remote sensing.
arXiv Detail & Related papers (2023-11-02T12:34:23Z) - Reinforcement Learning Based Multi-modal Feature Fusion Network for
Novel Class Discovery [47.28191501836041]
In this paper, we employ a Reinforcement Learning framework to simulate the cognitive processes of humans.
We also deploy a Member-to-Leader Multi-Agent framework to extract and fuse features from multi-modal information.
We demonstrate the performance of our approach in both the 3D and 2D domains by employing the OS-MN40, OS-MN40-Miss, and Cifar10 datasets.
arXiv Detail & Related papers (2023-08-26T07:55:32Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Evaluating the Label Efficiency of Contrastive Self-Supervised Learning
for Multi-Resolution Satellite Imagery [0.0]
Self-supervised learning has been applied in the remote sensing domain to exploit readily-available unlabeled data.
In this paper, we study self-supervised visual representation learning through the lens of label efficiency.
arXiv Detail & Related papers (2022-10-13T06:54:13Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Voxel-wise Adversarial Semi-supervised Learning for Medical Image
Segmentation [4.489713477369384]
We introduce a novel adversarial learning-based semi-supervised segmentation method for medical image segmentation.
Our method embeds both local and global features from multiple hidden layers and learns context relations between multiple classes.
Our method outperforms current best-performing state-of-the-art semi-supervised learning approaches on the image segmentation of the left atrium (single class) and multiorgan datasets (multiclass)
arXiv Detail & Related papers (2022-05-14T06:57:19Z) - Leveraging Ensembles and Self-Supervised Learning for Fully-Unsupervised
Person Re-Identification and Text Authorship Attribution [77.85461690214551]
Learning from fully-unlabeled data is challenging in Multimedia Forensics problems, such as Person Re-Identification and Text Authorship Attribution.
Recent self-supervised learning methods have shown to be effective when dealing with fully-unlabeled data in cases where the underlying classes have significant semantic differences.
We propose a strategy to tackle Person Re-Identification and Text Authorship Attribution by enabling learning from unlabeled data even when samples from different classes are not prominently diverse.
arXiv Detail & Related papers (2022-02-07T13:08:11Z) - Weakly Supervised Change Detection Using Guided Anisotropic Difusion [97.43170678509478]
We propose original ideas that help us to leverage such datasets in the context of change detection.
First, we propose the guided anisotropic diffusion (GAD) algorithm, which improves semantic segmentation results.
We then show its potential in two weakly-supervised learning strategies tailored for change detection.
arXiv Detail & Related papers (2021-12-31T10:03:47Z) - Self-supervised Audiovisual Representation Learning for Remote Sensing Data [96.23611272637943]
We propose a self-supervised approach for pre-training deep neural networks in remote sensing.
By exploiting the correspondence between geo-tagged audio recordings and remote sensing, this is done in a completely label-free manner.
We show that our approach outperforms existing pre-training strategies for remote sensing imagery.
arXiv Detail & Related papers (2021-08-02T07:50:50Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
We introduce a parametrized representation of fixed size, which embeds and then aggregates elements from a given input set according to the optimal transport plan between the set and a trainable reference.
Our approach scales to large datasets and allows end-to-end training of the reference, while also providing a simple unsupervised learning mechanism with small computational cost.
arXiv Detail & Related papers (2020-06-22T08:35:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.