ReGenMorph: Visibly Realistic GAN Generated Face Morphing Attacks by
Attack Re-generation
- URL: http://arxiv.org/abs/2108.09130v1
- Date: Fri, 20 Aug 2021 11:55:46 GMT
- Title: ReGenMorph: Visibly Realistic GAN Generated Face Morphing Attacks by
Attack Re-generation
- Authors: Naser Damer, Kiran Raja, Marius S\"u{\ss}milch, Sushma Venkatesh, Fadi
Boutros, Meiling Fang, Florian Kirchbuchner, Raghavendra Ramachandra, Arjan
Kuijper
- Abstract summary: This work presents the novel morphing pipeline, ReGenMorph, to eliminate the LMA blending artifacts by using a GAN-based generation.
The generated ReGenMorph appearance is compared to recent morphing approaches and evaluated for face recognition vulnerability and attack detectability.
- Score: 7.169807933149473
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Face morphing attacks aim at creating face images that are verifiable to be
the face of multiple identities, which can lead to building faulty identity
links in operations like border checks. While creating a morphed face detector
(MFD), training on all possible attack types is essential to achieve good
detection performance. Therefore, investigating new methods of creating
morphing attacks drives the generalizability of MADs. Creating morphing attacks
was performed on the image level, by landmark interpolation, or on the
latent-space level, by manipulating latent vectors in a generative adversarial
network. The earlier results in varying blending artifacts and the latter
results in synthetic-like striping artifacts. This work presents the novel
morphing pipeline, ReGenMorph, to eliminate the LMA blending artifacts by using
a GAN-based generation, as well as, eliminate the manipulation in the latent
space, resulting in visibly realistic morphed images compared to previous
works. The generated ReGenMorph appearance is compared to recent morphing
approaches and evaluated for face recognition vulnerability and attack
detectability, whether as known or unknown attacks.
Related papers
- LADIMO: Face Morph Generation through Biometric Template Inversion with Latent Diffusion [5.602947425285195]
Face morphing attacks pose a severe security threat to face recognition systems.
We present a representation-level face morphing approach, namely LADIMO, that performs morphing on two face recognition embeddings.
We show that each face morph variant has an individual attack success rate, enabling us to maximize the morph attack potential.
arXiv Detail & Related papers (2024-10-10T14:41:37Z) - ID-Guard: A Universal Framework for Combating Facial Manipulation via Breaking Identification [60.73617868629575]
misuse of deep learning-based facial manipulation poses a potential threat to civil rights.
To prevent this fraud at its source, proactive defense technology was proposed to disrupt the manipulation process.
We propose a novel universal framework for combating facial manipulation, called ID-Guard.
arXiv Detail & Related papers (2024-09-20T09:30:08Z) - UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
High-level semantic features are less susceptible to perturbations and not limited to forgery-specific artifacts, thus having stronger generalization.
We introduce UniForensics, a novel deepfake detection framework that leverages a transformer-based video network, with a meta-functional face classification for enriched facial representation.
arXiv Detail & Related papers (2024-07-26T20:51:54Z) - Imperceptible Face Forgery Attack via Adversarial Semantic Mask [59.23247545399068]
We propose an Adversarial Semantic Mask Attack framework (ASMA) which can generate adversarial examples with good transferability and invisibility.
Specifically, we propose a novel adversarial semantic mask generative model, which can constrain generated perturbations in local semantic regions for good stealthiness.
arXiv Detail & Related papers (2024-06-16T10:38:11Z) - MLSD-GAN -- Generating Strong High Quality Face Morphing Attacks using Latent Semantic Disentanglement [6.747633314364796]
Face-morphing attacks can be used to fool face recognition systems.
We propose a new method for generating high-quality morphing attacks using StyleGAN disentanglement.
arXiv Detail & Related papers (2024-04-19T07:26:30Z) - MorphGANFormer: Transformer-based Face Morphing and De-Morphing [55.211984079735196]
StyleGAN-based approaches to face morphing are among the leading techniques.
We propose a transformer-based alternative to face morphing and demonstrate its superiority to StyleGAN-based methods.
arXiv Detail & Related papers (2023-02-18T19:09:11Z) - MorDIFF: Recognition Vulnerability and Attack Detectability of Face
Morphing Attacks Created by Diffusion Autoencoders [10.663919597506055]
Face morphing attacks are created on the image-level or on the representation-level.
Recent advances in the diffusion autoencoder models have overcome the GAN limitations, leading to high reconstruction fidelity.
This work investigates using diffusion autoencoders to create face morphing attacks by comparing them to a wide range of image-level and representation-level morphs.
arXiv Detail & Related papers (2023-02-03T16:37:38Z) - Restricted Black-box Adversarial Attack Against DeepFake Face Swapping [70.82017781235535]
We introduce a practical adversarial attack that does not require any queries to the facial image forgery model.
Our method is built on a substitute model persuing for face reconstruction and then transfers adversarial examples from the substitute model directly to inaccessible black-box DeepFake models.
arXiv Detail & Related papers (2022-04-26T14:36:06Z) - Ensembling with Deep Generative Views [72.70801582346344]
generative models can synthesize "views" of artificial images that mimic real-world variations, such as changes in color or pose.
Here, we investigate whether such views can be applied to real images to benefit downstream analysis tasks such as image classification.
We use StyleGAN2 as the source of generative augmentations and investigate this setup on classification tasks involving facial attributes, cat faces, and cars.
arXiv Detail & Related papers (2021-04-29T17:58:35Z) - MIPGAN -- Generating Strong and High Quality Morphing Attacks Using
Identity Prior Driven GAN [22.220940043294334]
We present a new approach for generating strong attacks using an Identity Prior Driven Generative Adversarial Network.
The proposed MIPGAN is derived from the StyleGAN with a newly formulated loss function exploiting perceptual quality and identity factor.
We demonstrate the proposed approach's applicability to generate strong morphing attacks by evaluating its vulnerability against both commercial and deep learning based Face Recognition System.
arXiv Detail & Related papers (2020-09-03T15:08:38Z) - Can GAN Generated Morphs Threaten Face Recognition Systems Equally as
Landmark Based Morphs? -- Vulnerability and Detection [22.220940043294334]
We propose a new framework for generating face morphs using a newer Generative Adversarial Network (GAN) - StyleGAN.
With the newly created morphing dataset of 2500 morphed face images, we pose a critical question in this work.
arXiv Detail & Related papers (2020-07-07T16:52:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.