Accelerating Federated Learning with a Global Biased Optimiser
- URL: http://arxiv.org/abs/2108.09134v1
- Date: Fri, 20 Aug 2021 12:08:44 GMT
- Title: Accelerating Federated Learning with a Global Biased Optimiser
- Authors: Jed Mills, Jia Hu, Geyong Min, Rui Jin, Siwei Zheng, Jin Wang
- Abstract summary: Federated Learning (FL) is a recent development in the field of machine learning that collaboratively trains models without the training data leaving client devices.
We propose a novel, generalised approach for applying adaptive optimisation techniques to FL with the Federated Global Biased Optimiser (FedGBO) algorithm.
FedGBO accelerates FL by applying a set of global biased optimiser values during the local training phase of FL, which helps to reduce client-drift' from non-IID data.
- Score: 16.69005478209394
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) is a recent development in the field of machine
learning that collaboratively trains models without the training data leaving
client devices, in order to preserve data-privacy. In realistic settings, the
total training set is distributed over clients in a highly non-Independent and
Identically Distributed (non-IID) fashion, which has been shown extensively to
harm FL convergence speed and final model performance. We propose a novel,
generalised approach for applying adaptive optimisation techniques to FL with
the Federated Global Biased Optimiser (FedGBO) algorithm. FedGBO accelerates FL
by applying a set of global biased optimiser values during the local training
phase of FL, which helps to reduce `client-drift' from non-IID data, whilst
also benefiting from adaptive momentum/learning-rate methods. We show that the
FedGBO update with a generic optimiser can be viewed as a centralised update
with biased gradients and optimiser update, and use this theoretical framework
to prove the convergence of FedGBO using momentum-Stochastic Gradient Descent.
We also perform extensive experiments using 4 realistic benchmark FL datasets
and 3 popular adaptive optimisers to compare the performance of different
adaptive-FL approaches, demonstrating that FedGBO has highly competitive
performance considering its low communication and computation costs, and
providing highly practical insights for the use of adaptive optimisation in FL.
Related papers
- FADAS: Towards Federated Adaptive Asynchronous Optimization [56.09666452175333]
Federated learning (FL) has emerged as a widely adopted training paradigm for privacy-preserving machine learning.
This paper introduces federated adaptive asynchronous optimization, named FADAS, a novel method that incorporates asynchronous updates into adaptive federated optimization with provable guarantees.
We rigorously establish the convergence rate of the proposed algorithms and empirical results demonstrate the superior performance of FADAS over other asynchronous FL baselines.
arXiv Detail & Related papers (2024-07-25T20:02:57Z) - FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
Federated Learning (FL) enables collaborative training of machine learning models on decentralized data.
Data across clients often differs significantly due to class imbalance, feature distribution skew, sample size imbalance, and other phenomena.
We propose a novel Bayesian PFL framework using bi-level optimization to tackle the data heterogeneity challenges.
arXiv Detail & Related papers (2024-05-29T11:28:06Z) - Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
Synchronous federated learning (FL) is a popular paradigm for collaborative edge learning.
As some of the devices may have limited computational resources and varying availability, FL latency is highly sensitive to stragglers.
We propose straggler-aware layer-wise federated learning (SALF) that leverages the optimization procedure of NNs via backpropagation to update the global model in a layer-wise fashion.
arXiv Detail & Related papers (2024-03-27T09:14:36Z) - Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization [71.87335804334616]
Federated learning (FL) is a promising paradigm to enable collaborative model training with decentralized data.
The training process of Large Language Models (LLMs) generally incurs the update of significant parameters.
This paper proposes an efficient partial prompt tuning approach to improve performance and efficiency simultaneously.
arXiv Detail & Related papers (2023-10-23T16:37:59Z) - Semi-Federated Learning: Convergence Analysis and Optimization of A
Hybrid Learning Framework [70.83511997272457]
We propose a semi-federated learning (SemiFL) paradigm to leverage both the base station (BS) and devices for a hybrid implementation of centralized learning (CL) and FL.
We propose a two-stage algorithm to solve this intractable problem, in which we provide the closed-form solutions to the beamformers.
arXiv Detail & Related papers (2023-10-04T03:32:39Z) - FedAVO: Improving Communication Efficiency in Federated Learning with
African Vultures Optimizer [0.0]
Federated Learning (FL) is a distributed machine learning technique.
In this paper, we introduce FedAVO, a novel FL algorithm that enhances communication effectiveness.
We show that FedAVO achieves significant improvement in terms of model accuracy and communication round.
arXiv Detail & Related papers (2023-05-02T02:04:19Z) - AnycostFL: Efficient On-Demand Federated Learning over Heterogeneous
Edge Devices [20.52519915112099]
We propose a cost-adjustable FL framework, named AnycostFL, that enables diverse edge devices to efficiently perform local updates.
Experiment results indicate that, our learning framework can reduce up to 1.9 times of the training latency and energy consumption for realizing a reasonable global testing accuracy.
arXiv Detail & Related papers (2023-01-08T15:25:55Z) - Accelerated Federated Learning with Decoupled Adaptive Optimization [53.230515878096426]
federated learning (FL) framework enables clients to collaboratively learn a shared model while keeping privacy of training data on clients.
Recently, many iterations efforts have been made to generalize centralized adaptive optimization methods, such as SGDM, Adam, AdaGrad, etc., to federated settings.
This work aims to develop novel adaptive optimization methods for FL from the perspective of dynamics of ordinary differential equations (ODEs)
arXiv Detail & Related papers (2022-07-14T22:46:43Z) - Disentangled Federated Learning for Tackling Attributes Skew via
Invariant Aggregation and Diversity Transferring [104.19414150171472]
Attributes skews the current federated learning (FL) frameworks from consistent optimization directions among the clients.
We propose disentangled federated learning (DFL) to disentangle the domain-specific and cross-invariant attributes into two complementary branches.
Experiments verify that DFL facilitates FL with higher performance, better interpretability, and faster convergence rate, compared with SOTA FL methods.
arXiv Detail & Related papers (2022-06-14T13:12:12Z) - Local Adaptivity in Federated Learning: Convergence and Consistency [25.293584783673413]
Federated learning (FL) framework trains a machine learning model using decentralized data stored at edge client devices by periodically aggregating locally trained models.
We show in both theory and practice that while local adaptive methods can accelerate convergence, they can cause a non-vanishing solution bias.
We propose correction techniques to overcome this inconsistency and complement the local adaptive methods for FL.
arXiv Detail & Related papers (2021-06-04T07:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.