Disentangled Federated Learning for Tackling Attributes Skew via
Invariant Aggregation and Diversity Transferring
- URL: http://arxiv.org/abs/2206.06818v1
- Date: Tue, 14 Jun 2022 13:12:12 GMT
- Title: Disentangled Federated Learning for Tackling Attributes Skew via
Invariant Aggregation and Diversity Transferring
- Authors: Zhengquan Luo, Yunlong Wang, Zilei Wang, Zhenan Sun, Tieniu Tan
- Abstract summary: Attributes skews the current federated learning (FL) frameworks from consistent optimization directions among the clients.
We propose disentangled federated learning (DFL) to disentangle the domain-specific and cross-invariant attributes into two complementary branches.
Experiments verify that DFL facilitates FL with higher performance, better interpretability, and faster convergence rate, compared with SOTA FL methods.
- Score: 104.19414150171472
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Attributes skew hinders the current federated learning (FL) frameworks from
consistent optimization directions among the clients, which inevitably leads to
performance reduction and unstable convergence. The core problems lie in that:
1) Domain-specific attributes, which are non-causal and only locally valid, are
indeliberately mixed into global aggregation. 2) The one-stage optimizations of
entangled attributes cannot simultaneously satisfy two conflicting objectives,
i.e., generalization and personalization. To cope with these, we proposed
disentangled federated learning (DFL) to disentangle the domain-specific and
cross-invariant attributes into two complementary branches, which are trained
by the proposed alternating local-global optimization independently.
Importantly, convergence analysis proves that the FL system can be stably
converged even if incomplete client models participate in the global
aggregation, which greatly expands the application scope of FL. Extensive
experiments verify that DFL facilitates FL with higher performance, better
interpretability, and faster convergence rate, compared with SOTA FL methods on
both manually synthesized and realistic attributes skew datasets.
Related papers
- On ADMM in Heterogeneous Federated Learning: Personalization, Robustness, and Fairness [16.595935469099306]
We propose FLAME, an optimization framework by utilizing the alternating direction method of multipliers (ADMM) to train personalized and global models.
Our theoretical analysis establishes the global convergence and two kinds of convergence rates for FLAME under mild assumptions.
Our experimental findings show that FLAME outperforms state-of-the-art methods in convergence and accuracy, and it achieves higher test accuracy under various attacks.
arXiv Detail & Related papers (2024-07-23T11:35:42Z) - Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
Synchronous federated learning (FL) is a popular paradigm for collaborative edge learning.
As some of the devices may have limited computational resources and varying availability, FL latency is highly sensitive to stragglers.
We propose straggler-aware layer-wise federated learning (SALF) that leverages the optimization procedure of NNs via backpropagation to update the global model in a layer-wise fashion.
arXiv Detail & Related papers (2024-03-27T09:14:36Z) - Semi-Federated Learning: Convergence Analysis and Optimization of A
Hybrid Learning Framework [70.83511997272457]
We propose a semi-federated learning (SemiFL) paradigm to leverage both the base station (BS) and devices for a hybrid implementation of centralized learning (CL) and FL.
We propose a two-stage algorithm to solve this intractable problem, in which we provide the closed-form solutions to the beamformers.
arXiv Detail & Related papers (2023-10-04T03:32:39Z) - Fourier Test-time Adaptation with Multi-level Consistency for Robust
Classification [10.291631977766672]
We propose a novel approach called Fourier Test-time Adaptation (FTTA) to integrate input and model tuning.
FTTA builds a reliable multi-level consistency measurement of paired inputs for achieving self-supervised of prediction.
It was extensively validated on three large classification datasets with different modalities and organs.
arXiv Detail & Related papers (2023-06-05T02:29:38Z) - Dynamic Regularized Sharpness Aware Minimization in Federated Learning: Approaching Global Consistency and Smooth Landscape [59.841889495864386]
In federated learning (FL), a cluster of local clients are chaired under the coordination of a global server.
Clients are prone to overfit into their own optima, which extremely deviates from the global objective.
ttfamily FedSMOO adopts a dynamic regularizer to guarantee the local optima towards the global objective.
Our theoretical analysis indicates that ttfamily FedSMOO achieves fast $mathcalO (1/T)$ convergence rate with low bound generalization.
arXiv Detail & Related papers (2023-05-19T10:47:44Z) - Reliable Federated Disentangling Network for Non-IID Domain Feature [62.73267904147804]
In this paper, we propose a novel reliable federated disentangling network, termed RFedDis.
To the best of our knowledge, our proposed RFedDis is the first work to develop an FL approach based on evidential uncertainty combined with feature disentangling.
Our proposed RFedDis provides outstanding performance with a high degree of reliability as compared to other state-of-the-art FL approaches.
arXiv Detail & Related papers (2023-01-30T11:46:34Z) - Transformer-based Context Condensation for Boosting Feature Pyramids in
Object Detection [77.50110439560152]
Current object detectors typically have a feature pyramid (FP) module for multi-level feature fusion (MFF)
We propose a novel and efficient context modeling mechanism that can help existing FPs deliver better MFF results.
In particular, we introduce a novel insight that comprehensive contexts can be decomposed and condensed into two types of representations for higher efficiency.
arXiv Detail & Related papers (2022-07-14T01:45:03Z) - AFAFed -- Protocol analysis [3.016628653955123]
This is a novel A Fair Federated Adaptive learning framework for stream-oriented IoT application environments.
We analyze the convergence properties and address the implementation aspects AFAFed.
arXiv Detail & Related papers (2022-06-29T22:12:08Z) - On the Convergence of Heterogeneous Federated Learning with Arbitrary
Adaptive Online Model Pruning [15.300983585090794]
We present a unifying framework for heterogeneous FL algorithms with em arbitrary adaptive online model pruning.
In particular, we prove that under certain sufficient conditions, these algorithms converge to a stationary point of standard FL for general smooth cost functions.
We illuminate two key factors impacting convergence: pruning-induced noise and minimum coverage index.
arXiv Detail & Related papers (2022-01-27T20:43:38Z) - Accelerating Federated Learning with a Global Biased Optimiser [16.69005478209394]
Federated Learning (FL) is a recent development in the field of machine learning that collaboratively trains models without the training data leaving client devices.
We propose a novel, generalised approach for applying adaptive optimisation techniques to FL with the Federated Global Biased Optimiser (FedGBO) algorithm.
FedGBO accelerates FL by applying a set of global biased optimiser values during the local training phase of FL, which helps to reduce client-drift' from non-IID data.
arXiv Detail & Related papers (2021-08-20T12:08:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.