Fourier Neural Operator Networks: A Fast and General Solver for the
Photoacoustic Wave Equation
- URL: http://arxiv.org/abs/2108.09374v1
- Date: Fri, 20 Aug 2021 21:09:53 GMT
- Title: Fourier Neural Operator Networks: A Fast and General Solver for the
Photoacoustic Wave Equation
- Authors: Steven Guan, Ko-Tsung Hsu, and Parag V. Chitnis
- Abstract summary: We apply a fast data-driven deep learning method for solving the 2D photoacoustic wave equation in a homogeneous medium.
We show that the FNO network generated comparable simulations with small errors and was several orders of magnitude faster.
- Score: 1.7205106391379026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simulation tools for photoacoustic wave propagation have played a key role in
advancing photoacoustic imaging by providing quantitative and qualitative
insights into parameters affecting image quality. Classical methods for
numerically solving the photoacoustic wave equation relies on a fine
discretization of space and can become computationally expensive for large
computational grids. In this work, we apply Fourier Neural Operator (FNO)
networks as a fast data-driven deep learning method for solving the 2D
photoacoustic wave equation in a homogeneous medium. Comparisons between the
FNO network and pseudo-spectral time domain approach demonstrated that the FNO
network generated comparable simulations with small errors and was several
orders of magnitude faster. Moreover, the FNO network was generalizable and can
generate simulations not observed in the training data.
Related papers
- WiNet: Wavelet-based Incremental Learning for Efficient Medical Image Registration [68.25711405944239]
Deep image registration has demonstrated exceptional accuracy and fast inference.
Recent advances have adopted either multiple cascades or pyramid architectures to estimate dense deformation fields in a coarse-to-fine manner.
We introduce a model-driven WiNet that incrementally estimates scale-wise wavelet coefficients for the displacement/velocity field across various scales.
arXiv Detail & Related papers (2024-07-18T11:51:01Z) - Incremental Spatial and Spectral Learning of Neural Operators for
Solving Large-Scale PDEs [86.35471039808023]
We introduce the Incremental Fourier Neural Operator (iFNO), which progressively increases the number of frequency modes used by the model.
We show that iFNO reduces total training time while maintaining or improving generalization performance across various datasets.
Our method demonstrates a 10% lower testing error, using 20% fewer frequency modes compared to the existing Fourier Neural Operator, while also achieving a 30% faster training.
arXiv Detail & Related papers (2022-11-28T09:57:15Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
We study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time.
This work introduces a blueprint for frequency domain learning through a single transform: transform once (T1)
arXiv Detail & Related papers (2022-11-26T01:56:05Z) - Solving Seismic Wave Equations on Variable Velocity Models with Fourier
Neural Operator [3.2307366446033945]
We propose a new framework paralleled Fourier neural operator (PFNO) for efficiently training the FNO-based solver.
Numerical experiments demonstrate the high accuracy of both FNO and PFNO with complicated velocity models.
PFNO admits higher computational efficiency on large-scale testing datasets, compared with the traditional finite-difference method.
arXiv Detail & Related papers (2022-09-25T22:25:57Z) - Wave simulation in non-smooth media by PINN with quadratic neural
network and PML condition [2.7651063843287718]
The recently proposed physics-informed neural network (PINN) has achieved successful applications in solving a wide range of partial differential equations (PDEs)
In this paper, we solve the acoustic and visco-acoustic scattered-field wave equation in the frequency domain with PINN instead of the wave equation to remove source perturbation.
We show that PML and quadratic neurons improve the results as well as attenuation and discuss the reason for this improvement.
arXiv Detail & Related papers (2022-08-16T13:29:01Z) - Single Plane-Wave Imaging using Physics-Based Deep Learning [2.1410799064827226]
In plane-wave imaging, multiple unfocused ultrasound waves are transmitted into a medium of interest from different angles.
Deep learning methods have been proposed to improve ultrasound imaging.
We propose a data-to-image architecture that incorporates a wave-physics-based image formation algorithm in-between deep convolutional neural networks.
arXiv Detail & Related papers (2021-09-08T14:06:29Z) - Seismic wave propagation and inversion with Neural Operators [7.296366040398878]
We develop a prototype framework for learning general solutions using a recently developed machine learning paradigm called Neural Operator.
A trained Neural Operator can compute a solution in negligible time for any velocity structure or source location.
We illustrate the method with the 2D acoustic wave equation and demonstrate the method's applicability to seismic tomography.
arXiv Detail & Related papers (2021-08-11T19:17:39Z) - Prediction of Ultrasonic Guided Wave Propagation in Solid-fluid and
their Interface under Uncertainty using Machine Learning [0.0]
We advance existing research by accounting for uncertainty in the material and geometric properties of a structure.
We develop an efficient algorithm that addresses the inherent complexity of solving the multiphysics problem under uncertainty.
The proposed approach provides an accurate prediction for the WpFSI problem in the presence of uncertainty.
arXiv Detail & Related papers (2021-03-30T01:05:14Z) - Deep Unfolded Recovery of Sub-Nyquist Sampled Ultrasound Image [94.42139459221784]
We propose a reconstruction method from sub-Nyquist samples in the time and spatial domain, that is based on unfolding the ISTA algorithm.
Our method allows reducing the number of array elements, sampling rate, and computational time while ensuring high quality imaging performance.
arXiv Detail & Related papers (2021-03-01T19:19:38Z) - Learning Frequency Domain Approximation for Binary Neural Networks [68.79904499480025]
We propose to estimate the gradient of sign function in the Fourier frequency domain using the combination of sine functions for training BNNs.
The experiments on several benchmark datasets and neural architectures illustrate that the binary network learned using our method achieves the state-of-the-art accuracy.
arXiv Detail & Related papers (2021-03-01T08:25:26Z) - Progressive Training of Multi-level Wavelet Residual Networks for Image
Denoising [80.10533234415237]
This paper presents a multi-level wavelet residual network (MWRN) architecture as well as a progressive training scheme to improve image denoising performance.
Experiments on both synthetic and real-world noisy images show that our PT-MWRN performs favorably against the state-of-the-art denoising methods.
arXiv Detail & Related papers (2020-10-23T14:14:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.