WiNet: Wavelet-based Incremental Learning for Efficient Medical Image Registration
- URL: http://arxiv.org/abs/2407.13426v1
- Date: Thu, 18 Jul 2024 11:51:01 GMT
- Title: WiNet: Wavelet-based Incremental Learning for Efficient Medical Image Registration
- Authors: Xinxing Cheng, Xi Jia, Wenqi Lu, Qiufu Li, Linlin Shen, Alexander Krull, Jinming Duan,
- Abstract summary: Deep image registration has demonstrated exceptional accuracy and fast inference.
Recent advances have adopted either multiple cascades or pyramid architectures to estimate dense deformation fields in a coarse-to-fine manner.
We introduce a model-driven WiNet that incrementally estimates scale-wise wavelet coefficients for the displacement/velocity field across various scales.
- Score: 68.25711405944239
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep image registration has demonstrated exceptional accuracy and fast inference. Recent advances have adopted either multiple cascades or pyramid architectures to estimate dense deformation fields in a coarse-to-fine manner. However, due to the cascaded nature and repeated composition/warping operations on feature maps, these methods negatively increase memory usage during training and testing. Moreover, such approaches lack explicit constraints on the learning process of small deformations at different scales, thus lacking explainability. In this study, we introduce a model-driven WiNet that incrementally estimates scale-wise wavelet coefficients for the displacement/velocity field across various scales, utilizing the wavelet coefficients derived from the original input image pair. By exploiting the properties of the wavelet transform, these estimated coefficients facilitate the seamless reconstruction of a full-resolution displacement/velocity field via our devised inverse discrete wavelet transform (IDWT) layer. This approach avoids the complexities of cascading networks or composition operations, making our WiNet an explainable and efficient competitor with other coarse-to-fine methods. Extensive experimental results from two 3D datasets show that our WiNet is accurate and GPU efficient. The code is available at https://github.com/x-xc/WiNet .
Related papers
- Wavelet-based Bi-dimensional Aggregation Network for SAR Image Change Detection [53.842568573251214]
Experimental results on three SAR datasets demonstrate that our WBANet significantly outperforms contemporary state-of-the-art methods.
Our WBANet achieves 98.33%, 96.65%, and 96.62% of percentage of correct classification (PCC) on the respective datasets.
arXiv Detail & Related papers (2024-07-18T04:36:10Z) - An Innovative Networks in Federated Learning [3.38220960870904]
This paper presents the development and application of Wavelet Kolmogorov-Arnold Networks (Wav-KAN) in federated learning.
We have considered both continuous wavelet transform (CWT) and also discrete wavelet transform (DWT) to enable multiresolution capabaility.
Extensive experiments were conducted on different datasets, demonstrating Wav-KAN's superior performance in terms of interpretability, computational speed, training and test accuracy.
arXiv Detail & Related papers (2024-05-28T05:20:01Z) - QGait: Toward Accurate Quantization for Gait Recognition with Binarized Input [17.017127559393398]
We propose a differentiable soft quantizer, which better simulates the gradient of the round function during backpropagation.
This enables the network to learn from subtle input perturbations.
We further refine the training strategy to ensure convergence while simulating quantization errors.
arXiv Detail & Related papers (2024-05-22T17:34:18Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Single Image Depth Estimation using Wavelet Decomposition [37.486778463181]
We present a novel method for predicting accurate depths from monocular images with high efficiency.
This optimal efficiency is achieved by exploiting wavelet decomposition.
We demonstrate that we can reconstruct high-fidelity depth maps by predicting sparse wavelet coefficients.
arXiv Detail & Related papers (2021-06-03T17:42:25Z) - Learning a Model-Driven Variational Network for Deformable Image
Registration [89.9830129923847]
VR-Net is a novel cascaded variational network for unsupervised deformable image registration.
It outperforms state-of-the-art deep learning methods on registration accuracy.
It maintains the fast inference speed of deep learning and the data-efficiency of variational model.
arXiv Detail & Related papers (2021-05-25T21:37:37Z) - InversionNet3D: Efficient and Scalable Learning for 3D Full Waveform
Inversion [14.574636791985968]
In this paper, we present InversionNet3D, an efficient and scalable encoder-decoder network for 3D FWI.
The proposed method employs group convolution in the encoder to establish an effective hierarchy for learning information from multiple sources.
Experiments on the 3D Kimberlina dataset demonstrate that InversionNet3D achieves lower computational cost and lower memory footprint compared to the baseline.
arXiv Detail & Related papers (2021-03-25T22:24:57Z) - Scale-covariant and scale-invariant Gaussian derivative networks [0.0]
This paper presents a hybrid approach between scale-space theory and deep learning, where a deep learning architecture is constructed by coupling parameterized scale-space operations in cascade.
It is demonstrated that the resulting approach allows for scale generalization, enabling good performance for classifying patterns at scales not present in the training data.
arXiv Detail & Related papers (2020-11-30T13:15:10Z) - Joint Multi-Dimension Pruning via Numerical Gradient Update [120.59697866489668]
We present joint multi-dimension pruning (abbreviated as JointPruning), an effective method of pruning a network on three crucial aspects: spatial, depth and channel simultaneously.
We show that our method is optimized collaboratively across the three dimensions in a single end-to-end training and it is more efficient than the previous exhaustive methods.
arXiv Detail & Related papers (2020-05-18T17:57:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.