A Sparse Structure Learning Algorithm for Bayesian Network
Identification from Discrete High-Dimensional Data
- URL: http://arxiv.org/abs/2108.09501v1
- Date: Sat, 21 Aug 2021 12:21:01 GMT
- Title: A Sparse Structure Learning Algorithm for Bayesian Network
Identification from Discrete High-Dimensional Data
- Authors: Nazanin Shajoonnezhad, Amin Nikanjam
- Abstract summary: This paper addresses the problem of learning a sparse structure Bayesian network from high-dimensional discrete data.
We propose a score function that satisfies the sparsity and the DAG property simultaneously.
Specifically, we use a variance reducing method in our optimization algorithm to make the algorithm work efficiently in high-dimensional data.
- Score: 0.40611352512781856
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the problem of learning a sparse structure Bayesian
network from high-dimensional discrete data. Compared to continuous Bayesian
networks, learning a discrete Bayesian network is a challenging problem due to
the large parameter space. Although many approaches have been developed for
learning continuous Bayesian networks, few approaches have been proposed for
the discrete ones. In this paper, we address learning Bayesian networks as an
optimization problem and propose a score function that satisfies the sparsity
and the DAG property simultaneously. Besides, we implement a block-wised
stochastic coordinate descent algorithm to optimize the score function.
Specifically, we use a variance reducing method in our optimization algorithm
to make the algorithm work efficiently in high-dimensional data. The proposed
approach is applied to synthetic data from well-known benchmark networks. The
quality, scalability, and robustness of the constructed network are measured.
Compared to some competitive approaches, the results reveal that our algorithm
outperforms the others in evaluation metrics.
Related papers
- Score-Based Methods for Discrete Optimization in Deep Learning [30.446056972242616]
We investigate a score-based approximation framework to solve such problems.
We experimentally demonstrate, in adversarial set classification tasks, that our method achieves a superior trade-off in terms of speed and solution quality compared to methods.
arXiv Detail & Related papers (2023-10-15T17:14:17Z) - Online Network Source Optimization with Graph-Kernel MAB [62.6067511147939]
We propose Grab-UCB, a graph- kernel multi-arms bandit algorithm to learn online the optimal source placement in large scale networks.
We describe the network processes with an adaptive graph dictionary model, which typically leads to sparse spectral representations.
We derive the performance guarantees that depend on network parameters, which further influence the learning curve of the sequential decision strategy.
arXiv Detail & Related papers (2023-07-07T15:03:42Z) - A Comprehensively Improved Hybrid Algorithm for Learning Bayesian
Networks: Multiple Compound Memory Erasing [0.0]
This paper presents a new hybrid algorithm, MCME (multiple compound memory erasing)
MCME retains the advantages of the first two methods, solves the shortcomings of the above CI tests, and makes innovations in the scoring function in the direction discrimination stage.
A large number of experiments show that MCME has better or similar performance than some existing algorithms.
arXiv Detail & Related papers (2022-12-05T12:52:07Z) - Training Neural Networks using SAT solvers [1.0152838128195465]
We propose an algorithm to explore the global optimisation method, using SAT solvers, for training a neural net.
In the experiments, we demonstrate the effectiveness of our algorithm against the ADAM optimiser in certain tasks like parity learning.
arXiv Detail & Related papers (2022-06-10T01:31:12Z) - A Differentiable Approach to Combinatorial Optimization using Dataless
Neural Networks [20.170140039052455]
We propose a radically different approach in that no data is required for training the neural networks that produce the solution.
In particular, we reduce the optimization problem to a neural network and employ a dataless training scheme to refine the parameters of the network such that those parameters yield the structure of interest.
arXiv Detail & Related papers (2022-03-15T19:21:31Z) - Unsupervised Domain-adaptive Hash for Networks [81.49184987430333]
Domain-adaptive hash learning has enjoyed considerable success in the computer vision community.
We develop an unsupervised domain-adaptive hash learning method for networks, dubbed UDAH.
arXiv Detail & Related papers (2021-08-20T12:09:38Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Distributed Optimization, Averaging via ADMM, and Network Topology [0.0]
We study the connection between network topology and convergence rates for different algorithms on a real world problem of sensor localization.
We also show interesting connections between ADMM and lifted Markov chains besides providing an explicitly characterization of its convergence.
arXiv Detail & Related papers (2020-09-05T21:44:39Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
We train a graph convolutional network to fit the performance of sampled sub-networks.
With this strategy, we achieve a higher rank correlation coefficient in the selected set of candidates.
arXiv Detail & Related papers (2020-04-17T19:12:39Z) - Channel Assignment in Uplink Wireless Communication using Machine
Learning Approach [54.012791474906514]
This letter investigates a channel assignment problem in uplink wireless communication systems.
Our goal is to maximize the sum rate of all users subject to integer channel assignment constraints.
Due to high computational complexity, machine learning approaches are employed to obtain computational efficient solutions.
arXiv Detail & Related papers (2020-01-12T15:54:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.