論文の概要: New Trends in Quantum Machine Learning
- arxiv url: http://arxiv.org/abs/2108.09664v1
- Date: Sun, 22 Aug 2021 08:23:30 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-24 15:55:40.296500
- Title: New Trends in Quantum Machine Learning
- Title(参考訳): 量子機械学習の新しい潮流
- Authors: Lorenzo Buffoni and Filippo Caruso
- Abstract要約: 我々は、機械学習が新しい量子技術とアルゴリズムの恩恵を受ける方法を探る。
データ可視化技術や機械学習から借用した他のスキームは、理論家にとって非常に有用である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Here we will give a perspective on new possible interplays between Machine
Learning and Quantum Physics, including also practical cases and applications.
We will explore the ways in which machine learning could benefit from new
quantum technologies and algorithms to find new ways to speed up their
computations by breakthroughs in physical hardware, as well as to improve
existing models or devise new learning schemes in the quantum domain. Moreover,
there are lots of experiments in quantum physics that do generate incredible
amounts of data and machine learning would be a great tool to analyze those and
make predictions, or even control the experiment itself. On top of that, data
visualization techniques and other schemes borrowed from machine learning can
be of great use to theoreticians to have better intuition on the structure of
complex manifolds or to make predictions on theoretical models. This new
research field, named as Quantum Machine Learning, is very rapidly growing
since it is expected to provide huge advantages over its classical counterpart
and deeper investigations are timely needed since they can be already tested on
the already commercially available quantum machines.
- Abstract(参考訳): ここでは、機械学習と量子物理学の新たな相互作用の可能性について展望する。
我々は、物理ハードウェアのブレークスルーによって計算をスピードアップする新しい方法を見つけるために、新しい量子技術とアルゴリズムから機械学習の恩恵を受ける方法を探り、既存のモデルを改善したり、量子領域で新しい学習スキームを考案したりする。
さらに、膨大な量のデータを生成する量子物理学の実験や機械学習は、それらを分析して予測したり、実験自体を制御したりするのに最適なツールとなるでしょう。
それに加えて、機械学習から借用されたデータ可視化技術やその他のスキームは、複雑な多様体の構造に関する直観や理論モデルに関する予測を行う上で、理論家にとって非常に有用である。
量子機械学習(Quantum Machine Learning)と名付けられたこの新しい研究分野は、古典的なものよりも大きなアドバンテージを提供すると期待されているため、急速に成長している。
関連論文リスト
- Large-scale quantum reservoir learning with an analog quantum computer [45.21335836399935]
我々は中性原子アナログ量子コンピュータの量子力学を利用してデータを処理する量子貯水池学習アルゴリズムを開発した。
アルゴリズムを実験的に実装し、機械学習タスクの様々なカテゴリで競合性能を達成する。
本研究は,従来の量子相関を有効機械学習に活用する可能性を示すものである。
論文 参考訳(メタデータ) (2024-07-02T18:00:00Z) - Symmetry-invariant quantum machine learning force fields [0.0]
我々は、データに着想を得た、広範囲な物理関連対称性の集合を明示的に組み込んだ量子ニューラルネットワークを設計する。
この結果から,分子力場生成は量子機械学習の枠組みを生かして著しく利益を得る可能性が示唆された。
論文 参考訳(メタデータ) (2023-11-19T16:15:53Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Artificial Intelligence and Machine Learning for Quantum Technologies [6.25426839308312]
ここ数年、科学者たちが機械学習を使って量子計測を分析し始めた例を紹介します。
オープンな課題と将来の可能性を強調し、今後10年間、いくつかの投機的ビジョンで締めくくります。
論文 参考訳(メタデータ) (2022-08-07T23:02:55Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
量子生成学習モデル(QGLM)は、古典的な学習モデルを上回る可能性がある。
機械学習の観点からQGLMの現状を概観する。
従来の機械学習タスクと量子物理学の両方におけるQGLMの潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-06-07T07:32:57Z) - Modern applications of machine learning in quantum sciences [51.09906911582811]
本稿では、教師なし、教師なし、強化学習アルゴリズムにおけるディープラーニングとカーネル手法の使用について述べる。
我々は、微分可能プログラミング、生成モデル、機械学習に対する統計的アプローチ、量子機械学習など、より専門的なトピックについて議論する。
論文 参考訳(メタデータ) (2022-04-08T17:48:59Z) - Simulating Quantum Materials with Digital Quantum Computers [55.41644538483948]
デジタル量子コンピュータ(DQC)は、古典的コンピュータでは引き起こせない量子シミュレーションを効率的に行うことができる。
このレビューの目的は、物理量子優位性を達成するために行われた進歩の要約を提供することである。
論文 参考訳(メタデータ) (2021-01-21T20:10:38Z) - Power of data in quantum machine learning [2.1012068875084964]
データから学習する古典機械によって、古典的に計算が難しい問題を簡単に予測できることが示される。
本稿では,フォールトトレラントシステムにおける学習問題に対して,単純かつ厳密な量子スピードアップを実現する量子モデルを提案する。
論文 参考訳(メタデータ) (2020-11-03T19:00:01Z) - Quantum Computing Methods for Supervised Learning [0.08594140167290096]
小型の量子コンピュータと量子アニールが製造され、既に商業的に販売されている。
我々は、教師付き機械学習問題への応用を探求する前に、量子コンピューティングの背景と重要な結果を要約する。
論文 参考訳(メタデータ) (2020-06-22T06:34:42Z) - Machine learning transfer efficiencies for noisy quantum walks [62.997667081978825]
グラフ型と量子系コヒーレンスの両方の要件を見つけるプロセスは自動化可能であることを示す。
この自動化は、特定のタイプの畳み込みニューラルネットワークを使用して、どのネットワークで、どのコヒーレンス要求の量子優位性が可能かを学習する。
我々の結果は、量子実験における利点の実証と、科学的研究と発見の自動化への道を開くために重要である。
論文 参考訳(メタデータ) (2020-01-15T18:36:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。