A Climate Change Vulnerability Assessment Framework: A Spatial Approach
- URL: http://arxiv.org/abs/2108.09762v1
- Date: Sun, 22 Aug 2021 15:50:55 GMT
- Title: A Climate Change Vulnerability Assessment Framework: A Spatial Approach
- Authors: Claudia C\'aceres, Yan Li and Brian Hilton
- Abstract summary: This paper proposes a Climate Change Vulnerability Assessment Framework (CCVAF) to assess climate change vulnerabilities among rural farmers.
The CCVAF framework uses information and communication technology (ICT) to assess climate change vulnerabilities among rural farmers.
- Score: 3.0429703764855343
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Climate change is affecting every known society, especially for small farmers
in Low-Income Countries because they depend heavily on rain, seasonality
patterns, and known temperature ranges. To build climate change resilient
communities among rural farmers, the first step is to understand the impact of
climate change on the population. This paper proposes a Climate Change
Vulnerability Assessment Framework (CCVAF) to assess climate change
vulnerabilities among rural farmers. The CCVAF framework uses information and
communication technology (ICT) to assess climate change vulnerabilities among
rural farmers by integrating both community level and individual household
level indicators. The CCVAF was instantiated into a GIS-based web application
named THRIVE for different decision-makers to better assess how climate change
is affecting rural farmers in Western Honduras. Qualitative evaluation of the
THRIVE showed that it is an innovative and useful tool. The CCVAF contributes
to not only the knowledge base of the climate change vulnerability assessment
but also the design science literature by providing guidelines to design a
class of climate change vulnerability assessment solutions.
Related papers
- Climate Change from Large Language Models [7.190384101545232]
Climate change poses grave challenges, demanding widespread understanding and low-carbon lifestyle awareness.
Large language models (LLMs) offer a powerful tool to address this crisis.
This paper proposes an automated evaluation framework to assess climate-crisis knowledge.
arXiv Detail & Related papers (2023-12-19T09:26:46Z) - Towards AI-driven Integrative Emissions Monitoring & Management for
Nature-Based Climate Solutions [0.0]
We propose a novel framework for AI-aided integrated and comprehensive decision support for various aspects of nature-based climate decision-making.
Rather than being disparate elements, we posit that the exchange of data and analytical results across elements of the framework will provide tremendous value.
arXiv Detail & Related papers (2023-12-17T21:55:41Z) - Climate Change Impact on Agricultural Land Suitability: An Interpretable
Machine Learning-Based Eurasia Case Study [94.07737890568644]
As of 2021, approximately 828 million people worldwide are experiencing hunger and malnutrition.
Climate change significantly impacts agricultural land suitability, potentially leading to severe food shortages.
Our study focuses on Central Eurasia, a region burdened with economic and social challenges.
arXiv Detail & Related papers (2023-10-24T15:15:28Z) - ClimateNLP: Analyzing Public Sentiment Towards Climate Change Using
Natural Language Processing [0.0]
This paper employs natural language processing (NLP) techniques to analyze climate change discourse and quantify the sentiment of climate change-related tweets.
The objective is to discern the sentiment individuals express and uncover patterns in public opinion concerning climate change.
arXiv Detail & Related papers (2023-10-12T07:48:50Z) - AI For Global Climate Cooperation 2023 Competition Proceedings [77.07135605362795]
No global authority can ensure compliance with international climate agreements.
RICE-N supports modeling regional decision-making using AI agents.
The IAM then models the climate-economic impact of those decisions into the future.
arXiv Detail & Related papers (2023-07-10T20:05:42Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - ClimateGAN: Raising Climate Change Awareness by Generating Images of
Floods [89.61670857155173]
We present our solution to simulate photo-realistic floods on authentic images.
We propose ClimateGAN, a model that leverages both simulated and real data for unsupervised domain adaptation and conditional image generation.
arXiv Detail & Related papers (2021-10-06T15:54:57Z) - Powering Effective Climate Communication with a Climate Knowledge Base [1.951890354110457]
We aim to build a system that presents to any individual the climate information predicted to best motivate and inspire them to take action given their unique set of personal values.
The system relies on a knowledge base (ClimateKB) of causes and effects of climate change, and their associations to personal values.
We plan to open source the ClimateKB and associated code to encourage future research and applications.
arXiv Detail & Related papers (2021-07-23T17:02:06Z) - NLP for Climate Policy: Creating a Knowledge Platform for Holistic and
Effective Climate Action [2.482368922343792]
The paper thematically discusses how NLP techniques could be employed in climate policy research.
We exemplify symbiosis of NLP and Climate Policy Research via four methodologies.
The present theme paper further argues that creating a knowledge platform would help in the formulation of a holistic climate policy.
arXiv Detail & Related papers (2021-05-12T12:30:02Z) - Analyzing Sustainability Reports Using Natural Language Processing [68.8204255655161]
In recent years, companies have increasingly been aiming to both mitigate their environmental impact and adapt to the changing climate context.
This is reported via increasingly exhaustive reports, which cover many types of climate risks and exposures under the umbrella of Environmental, Social, and Governance (ESG)
We present this tool and the methodology that we used to develop it in the present article.
arXiv Detail & Related papers (2020-11-03T21:22:42Z) - Dynamical Landscape and Multistability of a Climate Model [64.467612647225]
We find a third intermediate stable state in one of the two climate models we consider.
The combination of our approaches allows to identify how the negative feedback of ocean heat transport and entropy production drastically change the topography of Earth's climate.
arXiv Detail & Related papers (2020-10-20T15:31:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.