Towards AI-driven Integrative Emissions Monitoring & Management for
Nature-Based Climate Solutions
- URL: http://arxiv.org/abs/2312.11566v1
- Date: Sun, 17 Dec 2023 21:55:41 GMT
- Title: Towards AI-driven Integrative Emissions Monitoring & Management for
Nature-Based Climate Solutions
- Authors: Olamide Oladeji, Seyed Shahabeddin Mousavi
- Abstract summary: We propose a novel framework for AI-aided integrated and comprehensive decision support for various aspects of nature-based climate decision-making.
Rather than being disparate elements, we posit that the exchange of data and analytical results across elements of the framework will provide tremendous value.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AI has been proposed as an important tool to support several efforts related
to nature-based climate solutions such as the detection of wildfires that
affect forests and vegetation-based offsets. While this and other use-cases
provide important demonstrative value of the power of AI in climate change
mitigation, such efforts have typically been undertaken in silos, without
awareness of the integrative nature of real-world climate policy-making. In
this paper, we propose a novel overarching framework for AI-aided integrated
and comprehensive decision support for various aspects of nature-based climate
decision-making. Focusing on vegetation-based solutions such as forests, we
demonstrate how different AI-aided decision support models such as AI-aided
wildfire detection, AI-aided vegetation carbon stock assessment, reversal risk
mitigation, and disaster response planning can be integrated into a
comprehensive framework. Rather than being disparate elements, we posit that
the exchange of data and analytical results across elements of the framework,
and careful mitigation of uncertainty propagation will provide tremendous value
relative to the status-quo for real-world climate policy-making.
Related papers
- Crafting desirable climate trajectories with RL explored socio-environmental simulations [3.554161433683967]
Integrated Assessment Models (IAMs) combine social, economic, and environmental simulations to forecast potential policy effects.
Recent preliminary work using Reinforcement Learning (RL) to replace the traditional solvers shows promising results in decision making in uncertain and noisy scenarios.
We extend on this work by introducing multiple interacting RL agents as a preliminary analysis on modelling the complex interplay of socio-interactions between various stakeholders or nations.
arXiv Detail & Related papers (2024-10-09T13:21:50Z) - Towards A Comprehensive Assessment of AI's Environmental Impact [0.5982922468400899]
Recent surge of interest in machine learning has sparked a trend towards large-scale adoption of AI/ML.
There is a need for a framework that monitors the environmental impact and degradation from AI/ML throughout its lifecycle.
This study proposes a methodology to track environmental variables relating to the multifaceted impact of AI around datacenters using openly available energy data and globally acquired satellite observations.
arXiv Detail & Related papers (2024-05-22T21:19:35Z) - HAZARD Challenge: Embodied Decision Making in Dynamically Changing
Environments [93.94020724735199]
HAZARD consists of three unexpected disaster scenarios, including fire, flood, and wind.
This benchmark enables us to evaluate autonomous agents' decision-making capabilities across various pipelines.
arXiv Detail & Related papers (2024-01-23T18:59:43Z) - Analyzing Regional Impacts of Climate Change using Natural Language
Processing Techniques [0.9387233631570752]
We use BERT (Bidirectional Representations from Transformers) for Named Entity Recognition (NER) to identify specific geographies within the climate literature.
We conduct region-specific climate trend analyses to pinpoint the predominant themes or concerns related to climate change within a particular area.
These in-depth examinations of location-specific climate data enable the creation of more customized policy-making, adaptation, and mitigation strategies.
arXiv Detail & Related papers (2024-01-11T16:44:59Z) - Climate Change Impact on Agricultural Land Suitability: An Interpretable
Machine Learning-Based Eurasia Case Study [94.07737890568644]
As of 2021, approximately 828 million people worldwide are experiencing hunger and malnutrition.
Climate change significantly impacts agricultural land suitability, potentially leading to severe food shortages.
Our study focuses on Central Eurasia, a region burdened with economic and social challenges.
arXiv Detail & Related papers (2023-10-24T15:15:28Z) - Predictable Artificial Intelligence [77.1127726638209]
This paper introduces the ideas and challenges of Predictable AI.
It explores the ways in which we can anticipate key validity indicators of present and future AI ecosystems.
We argue that achieving predictability is crucial for fostering trust, liability, control, alignment and safety of AI ecosystems.
arXiv Detail & Related papers (2023-10-09T21:36:21Z) - AI For Global Climate Cooperation 2023 Competition Proceedings [77.07135605362795]
No global authority can ensure compliance with international climate agreements.
RICE-N supports modeling regional decision-making using AI agents.
The IAM then models the climate-economic impact of those decisions into the future.
arXiv Detail & Related papers (2023-07-10T20:05:42Z) - ClimateGAN: Raising Climate Change Awareness by Generating Images of
Floods [89.61670857155173]
We present our solution to simulate photo-realistic floods on authentic images.
We propose ClimateGAN, a model that leverages both simulated and real data for unsupervised domain adaptation and conditional image generation.
arXiv Detail & Related papers (2021-10-06T15:54:57Z) - Remote sensing, AI and innovative prediction methods for adapting cities
to the impacts of the climate change [0.0]
I propose an AI-based framework which might be useful for extracting indicators from remote sensing images.
I underline that this is an open field and an ongoing research for many scientists, therefore I offer an in depth discussion on the challenges and limitations of AI-based methods.
arXiv Detail & Related papers (2021-07-06T15:55:26Z) - Analyzing Sustainability Reports Using Natural Language Processing [68.8204255655161]
In recent years, companies have increasingly been aiming to both mitigate their environmental impact and adapt to the changing climate context.
This is reported via increasingly exhaustive reports, which cover many types of climate risks and exposures under the umbrella of Environmental, Social, and Governance (ESG)
We present this tool and the methodology that we used to develop it in the present article.
arXiv Detail & Related papers (2020-11-03T21:22:42Z) - HECT: High-Dimensional Ensemble Consistency Testing for Climate Models [1.7587442088965226]
Climate models play a crucial role in understanding the effect of environmental changes on climate to help mitigate climate risks and inform decisions.
Large global climate models such as the Community Earth System Model (CESM), are very complex with millions of lines of code describing interactions of the atmosphere, land, oceans, and ice.
Our work uses probabilistics like tree-based algorithms and deep neural networks to perform a statistically rigorous goodness-of-fit test of high-dimensional and man-made data.
arXiv Detail & Related papers (2020-10-08T15:16:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.