Relative Entropy-Regularized Optimal Transport on a Graph: a new
algorithm and an experimental comparison
- URL: http://arxiv.org/abs/2108.10004v1
- Date: Mon, 23 Aug 2021 08:25:51 GMT
- Title: Relative Entropy-Regularized Optimal Transport on a Graph: a new
algorithm and an experimental comparison
- Authors: Sylvain Courtain, Guillaume Guex, Ilkka Kivimaki and Marco Saerens
- Abstract summary: The present work investigates a new relative entropy-regularized algorithm for solving the optimal transport on a graph problem within the randomized shortest paths formalism.
The main advantage of this new formulation is the fact that it can easily accommodate edge flow capacity constraints.
The resulting optimal routing policy, i.e., the probability distribution of following an edge in each node, is Markovian and is computed by constraining the input and output flows to the prescribed marginal probabilities.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Following [21, 23], the present work investigates a new relative
entropy-regularized algorithm for solving the optimal transport on a graph
problem within the randomized shortest paths formalism. More precisely, a unit
flow is injected into a set of input nodes and collected from a set of output
nodes while minimizing the expected transportation cost together with a paths
relative entropy regularization term, providing a randomized routing policy.
The main advantage of this new formulation is the fact that it can easily
accommodate edge flow capacity constraints which commonly occur in real-world
problems. The resulting optimal routing policy, i.e., the probability
distribution of following an edge in each node, is Markovian and is computed by
constraining the input and output flows to the prescribed marginal
probabilities thanks to a variant of the algorithm developed in [8]. Besides,
experimental comparisons with other recently developed techniques show that the
distance measure between nodes derived from the introduced model provides
competitive results on semi-supervised classification tasks.
Related papers
- Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
We tackle the task of sampling from a probability density as transporting a tractable density function to the target.
We employ physics-informed neural networks (PINNs) to approximate the respective partial differential equations (PDEs) solutions.
PINNs allow for simulation- and discretization-free optimization and can be trained very efficiently.
arXiv Detail & Related papers (2024-07-10T17:39:50Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Flow-based Distributionally Robust Optimization [23.232731771848883]
We present a framework, called $textttFlowDRO$, for solving flow-based distributionally robust optimization (DRO) problems with Wasserstein uncertainty sets.
We aim to find continuous worst-case distribution (also called the Least Favorable Distribution, LFD) and sample from it.
We demonstrate its usage in adversarial learning, distributionally robust hypothesis testing, and a new mechanism for data-driven distribution perturbation differential privacy.
arXiv Detail & Related papers (2023-10-30T03:53:31Z) - Robust empirical risk minimization via Newton's method [9.797319790710711]
A new variant of Newton's method for empirical risk minimization is studied.
The gradient and Hessian of the objective function are replaced by robust estimators.
An algorithm for obtaining robust Newton directions based on the conjugate gradient method is also proposed.
arXiv Detail & Related papers (2023-01-30T18:54:54Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Learning Optimal Transport Between two Empirical Distributions with
Normalizing Flows [12.91637880428221]
We propose to leverage the flexibility of neural networks to learn an approximate optimal transport map.
We show that a particular instance of invertible neural networks, namely the normalizing flows, can be used to approximate the solution of this OT problem.
arXiv Detail & Related papers (2022-07-04T08:08:47Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - Semi-Discrete Optimal Transport: Hardness, Regularization and Numerical
Solution [8.465228064780748]
We prove that computing the Wasserstein distance between a discrete probability measure supported on two points is already #P-hard.
We introduce a distributionally robust dual optimal transport problem whose objective function is smoothed with the most adverse disturbance distributions.
We show that smoothing the dual objective function is equivalent to regularizing the primal objective function.
arXiv Detail & Related papers (2021-03-10T18:53:59Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
We introduce a novel algorithm improving over the state-of-the-art along multiple dimensions.
We establish minimax optimality for any learning horizon in the special case of non-contextual linear bandits.
arXiv Detail & Related papers (2020-10-23T09:12:47Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
Maximum a posteriori (MAP) inference in discrete-valued random fields is a fundamental problem in machine learning.
Due to the difficulty of this problem, linear programming (LP) relaxations are commonly used to derive specialized message passing algorithms.
We present randomized methods for accelerating these algorithms by leveraging techniques that underlie classical accelerated gradient.
arXiv Detail & Related papers (2020-07-01T18:43:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.