Distributionally Robust Optimization via Iterative Algorithms in Continuous Probability Spaces
- URL: http://arxiv.org/abs/2412.20556v1
- Date: Sun, 29 Dec 2024 19:31:23 GMT
- Title: Distributionally Robust Optimization via Iterative Algorithms in Continuous Probability Spaces
- Authors: Linglingzhi Zhu, Yao Xie,
- Abstract summary: We consider a minimax problem motivated by distributionally robust optimization (DRO) when the worst-case distribution is continuous.<n>Recent research has explored learning the worst-case distribution using neural network-based generative networks.<n>This paper bridges this theoretical challenge by presenting an iterative algorithm to solve such a minimax problem.
- Score: 6.992239210938067
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a minimax problem motivated by distributionally robust optimization (DRO) when the worst-case distribution is continuous, leading to significant computational challenges due to the infinite-dimensional nature of the optimization problem. Recent research has explored learning the worst-case distribution using neural network-based generative models to address these computational challenges but lacks algorithmic convergence guarantees. This paper bridges this theoretical gap by presenting an iterative algorithm to solve such a minimax problem, achieving global convergence under mild assumptions and leveraging technical tools from vector space minimax optimization and convex analysis in the space of continuous probability densities. In particular, leveraging Brenier's theorem, we represent the worst-case distribution as a transport map applied to a continuous reference measure and reformulate the regularized discrepancy-based DRO as a minimax problem in the Wasserstein space. Furthermore, we demonstrate that the worst-case distribution can be efficiently computed using a modified Jordan-Kinderlehrer-Otto (JKO) scheme with sufficiently large regularization parameters for commonly used discrepancy functions, linked to the radius of the ambiguity set. Additionally, we derive the global convergence rate and quantify the total number of subgradient and inexact modified JKO iterations required to obtain approximate stationary points. These results are potentially applicable to nonconvex and nonsmooth scenarios, with broad relevance to modern machine learning applications.
Related papers
- Stochastic Optimization with Optimal Importance Sampling [49.484190237840714]
We propose an iterative-based algorithm that jointly updates the decision and the IS distribution without requiring time-scale separation between the two.
Our method achieves the lowest possible variable variance and guarantees global convergence under convexity of the objective and mild assumptions on the IS distribution family.
arXiv Detail & Related papers (2025-04-04T16:10:18Z) - The Distributionally Robust Optimization Model of Sparse Principal Component Analysis [7.695578200868269]
We consider sparse principal component analysis (PCA) under a setting where the underlying probability distribution of the random parameter is uncertain.
This problem is formulated as a distributionally robust optimization (DRO) model based on a constructive approach to capturing uncertainty.
We prove that the inner problem admits a closed-form solution, reformulating the original DRO model into an equivalent minimization problem on the Stiefel manifold.
arXiv Detail & Related papers (2025-03-04T11:00:08Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Flow-based Distributionally Robust Optimization [23.232731771848883]
We present a framework, called $textttFlowDRO$, for solving flow-based distributionally robust optimization (DRO) problems with Wasserstein uncertainty sets.
We aim to find continuous worst-case distribution (also called the Least Favorable Distribution, LFD) and sample from it.
We demonstrate its usage in adversarial learning, distributionally robust hypothesis testing, and a new mechanism for data-driven distribution perturbation differential privacy.
arXiv Detail & Related papers (2023-10-30T03:53:31Z) - Information Theoretical Importance Sampling Clustering [18.248246885248733]
A current assumption of most clustering methods is that the training data and future data are taken from the same distribution.
We propose an information theoretical importance sampling based approach for clustering problems (ITISC)
Experiment results on synthetic datasets and a real-world load forecasting problem validate the effectiveness of the proposed model.
arXiv Detail & Related papers (2023-02-09T03:18:53Z) - Asymptotically Unbiased Instance-wise Regularized Partial AUC
Optimization: Theory and Algorithm [101.44676036551537]
One-way Partial AUC (OPAUC) and Two-way Partial AUC (TPAUC) measures the average performance of a binary classifier.
Most of the existing methods could only optimize PAUC approximately, leading to inevitable biases that are not controllable.
We present a simpler reformulation of the PAUC problem via distributional robust optimization AUC.
arXiv Detail & Related papers (2022-10-08T08:26:22Z) - Accelerated and instance-optimal policy evaluation with linear function
approximation [17.995515643150657]
Existing algorithms fail to match at least one of these lower bounds.
We develop an accelerated, variance-reduced fast temporal difference algorithm that simultaneously matches both lower bounds and attains a strong notion of instance-optimality.
arXiv Detail & Related papers (2021-12-24T17:21:04Z) - Distributed stochastic optimization with large delays [59.95552973784946]
One of the most widely used methods for solving large-scale optimization problems is distributed asynchronous gradient descent (DASGD)
We show that DASGD converges to a global optimal implementation model under same delay assumptions.
arXiv Detail & Related papers (2021-07-06T21:59:49Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
We study methods that use a collection of random observations to compute approximate solutions by searching over a known low-dimensional subspace of the Hilbert space.
We show how our results precisely characterize the error of a class of temporal difference learning methods for the policy evaluation problem with linear function approximation.
arXiv Detail & Related papers (2020-12-09T20:19:32Z) - Efficient Methods for Structured Nonconvex-Nonconcave Min-Max
Optimization [98.0595480384208]
We propose a generalization extraient spaces which converges to a stationary point.
The algorithm applies not only to general $p$-normed spaces, but also to general $p$-dimensional vector spaces.
arXiv Detail & Related papers (2020-10-31T21:35:42Z) - Nonconvex sparse regularization for deep neural networks and its
optimality [1.9798034349981162]
Deep neural network (DNN) estimators can attain optimal convergence rates for regression and classification problems.
We propose a novel penalized estimation method for sparse DNNs.
We prove that the sparse-penalized estimator can adaptively attain minimax convergence rates for various nonparametric regression problems.
arXiv Detail & Related papers (2020-03-26T07:15:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.