BiaSwap: Removing dataset bias with bias-tailored swapping augmentation
- URL: http://arxiv.org/abs/2108.10008v1
- Date: Mon, 23 Aug 2021 08:35:26 GMT
- Title: BiaSwap: Removing dataset bias with bias-tailored swapping augmentation
- Authors: Eungyeup Kim, Jihyeon Lee, Jaegul Choo
- Abstract summary: Deep neural networks often make decisions based on the spurious correlations inherent in the dataset, failing to generalize in an unbiased data distribution.
This paper proposes a novel bias-tailored augmentation-based approach, BiaSwap, for learning debiased representation without requiring supervision on the bias type.
- Score: 20.149645246997668
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks often make decisions based on the spurious correlations
inherent in the dataset, failing to generalize in an unbiased data
distribution. Although previous approaches pre-define the type of dataset bias
to prevent the network from learning it, recognizing the bias type in the real
dataset is often prohibitive. This paper proposes a novel bias-tailored
augmentation-based approach, BiaSwap, for learning debiased representation
without requiring supervision on the bias type. Assuming that the bias
corresponds to the easy-to-learn attributes, we sort the training images based
on how much a biased classifier can exploits them as shortcut and divide them
into bias-guiding and bias-contrary samples in an unsupervised manner.
Afterwards, we integrate the style-transferring module of the image translation
model with the class activation maps of such biased classifier, which enables
to primarily transfer the bias attributes learned by the classifier. Therefore,
given the pair of bias-guiding and bias-contrary, BiaSwap generates the
bias-swapped image which contains the bias attributes from the bias-contrary
images, while preserving bias-irrelevant ones in the bias-guiding images. Given
such augmented images, BiaSwap demonstrates the superiority in debiasing
against the existing baselines over both synthetic and real-world datasets.
Even without careful supervision on the bias, BiaSwap achieves a remarkable
performance on both unbiased and bias-guiding samples, implying the improved
generalization capability of the model.
Related papers
- CosFairNet:A Parameter-Space based Approach for Bias Free Learning [1.9116784879310025]
Deep neural networks trained on biased data often inadvertently learn unintended inference rules.
We introduce a novel approach to address bias directly in the model's parameter space, preventing its propagation across layers.
We show enhanced classification accuracy and debiasing effectiveness across various synthetic and real-world datasets.
arXiv Detail & Related papers (2024-10-19T13:06:40Z) - Medical Image Debiasing by Learning Adaptive Agreement from a Biased
Council [8.530912655468645]
Deep learning could be prone to learning shortcuts raised by dataset bias.
Despite its significance, there is a dearth of research in the medical image classification domain to address dataset bias.
This paper proposes learning Adaptive Agreement from a Biased Council (Ada-ABC), a debiasing framework that does not rely on explicit bias labels.
arXiv Detail & Related papers (2024-01-22T06:29:52Z) - Echoes: Unsupervised Debiasing via Pseudo-bias Labeling in an Echo
Chamber [17.034228910493056]
This paper presents experimental analyses revealing that the existing biased models overfit to bias-conflicting samples in the training data.
We propose a straightforward and effective method called Echoes, which trains a biased model and a target model with a different strategy.
Our approach achieves superior debiasing results compared to the existing baselines on both synthetic and real-world datasets.
arXiv Detail & Related papers (2023-05-06T13:13:18Z) - Debiasing Vision-Language Models via Biased Prompts [79.04467131711775]
We propose a general approach for debiasing vision-language foundation models by projecting out biased directions in the text embedding.
We show that debiasing only the text embedding with a calibrated projection matrix suffices to yield robust classifiers and fair generative models.
arXiv Detail & Related papers (2023-01-31T20:09:33Z) - Feature-Level Debiased Natural Language Understanding [86.8751772146264]
Existing natural language understanding (NLU) models often rely on dataset biases to achieve high performance on specific datasets.
We propose debiasing contrastive learning (DCT) to mitigate biased latent features and neglect the dynamic nature of bias.
DCT outperforms state-of-the-art baselines on out-of-distribution datasets while maintaining in-distribution performance.
arXiv Detail & Related papers (2022-12-11T06:16:14Z) - Self-supervised debiasing using low rank regularization [59.84695042540525]
Spurious correlations can cause strong biases in deep neural networks, impairing generalization ability.
We propose a self-supervised debiasing framework potentially compatible with unlabeled samples.
Remarkably, the proposed debiasing framework significantly improves the generalization performance of self-supervised learning baselines.
arXiv Detail & Related papers (2022-10-11T08:26:19Z) - General Greedy De-bias Learning [163.65789778416172]
We propose a General Greedy De-bias learning framework (GGD), which greedily trains the biased models and the base model like gradient descent in functional space.
GGD can learn a more robust base model under the settings of both task-specific biased models with prior knowledge and self-ensemble biased model without prior knowledge.
arXiv Detail & Related papers (2021-12-20T14:47:32Z) - Fighting Fire with Fire: Contrastive Debiasing without Bias-free Data
via Generative Bias-transformation [31.944147533327058]
Contrastive Debiasing via Generative Bias-transformation (CDvG)
We propose a novel method, Contrastive Debiasing via Generative Bias-transformation (CDvG), which works without explicit bias labels or bias-free samples.
Our method demonstrates superior performance compared to prior approaches, especially when bias-free samples are scarce or absent.
arXiv Detail & Related papers (2021-12-02T07:16:06Z) - Learning Debiased Representation via Disentangled Feature Augmentation [19.348340314001756]
This paper presents an empirical analysis revealing that training with "diverse" bias-conflicting samples is crucial for debiasing.
We propose a novel feature-level data augmentation technique in order to synthesize diverse bias-conflicting samples.
arXiv Detail & Related papers (2021-07-03T08:03:25Z) - Learning from Failure: Training Debiased Classifier from Biased
Classifier [76.52804102765931]
We show that neural networks learn to rely on spurious correlation only when it is "easier" to learn than the desired knowledge.
We propose a failure-based debiasing scheme by training a pair of neural networks simultaneously.
Our method significantly improves the training of the network against various types of biases in both synthetic and real-world datasets.
arXiv Detail & Related papers (2020-07-06T07:20:29Z) - Towards Robustifying NLI Models Against Lexical Dataset Biases [94.79704960296108]
This paper explores both data-level and model-level debiasing methods to robustify models against lexical dataset biases.
First, we debias the dataset through data augmentation and enhancement, but show that the model bias cannot be fully removed via this method.
The second approach employs a bag-of-words sub-model to capture the features that are likely to exploit the bias and prevents the original model from learning these biased features.
arXiv Detail & Related papers (2020-05-10T17:56:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.