Fighting Fire with Fire: Contrastive Debiasing without Bias-free Data
via Generative Bias-transformation
- URL: http://arxiv.org/abs/2112.01021v2
- Date: Wed, 5 Jul 2023 07:02:15 GMT
- Title: Fighting Fire with Fire: Contrastive Debiasing without Bias-free Data
via Generative Bias-transformation
- Authors: Yeonsung Jung, Hajin Shim, June Yong Yang, Eunho Yang
- Abstract summary: Contrastive Debiasing via Generative Bias-transformation (CDvG)
We propose a novel method, Contrastive Debiasing via Generative Bias-transformation (CDvG), which works without explicit bias labels or bias-free samples.
Our method demonstrates superior performance compared to prior approaches, especially when bias-free samples are scarce or absent.
- Score: 31.944147533327058
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs), despite their impressive ability to generalize
over-capacity networks, often rely heavily on malignant bias as shortcuts
instead of task-related information for discriminative tasks. To address this
problem, recent studies utilize auxiliary information related to the bias,
which is rarely obtainable in practice, or sift through a handful of bias-free
samples for debiasing. However, the success of these methods is not always
guaranteed due to the unfulfilled presumptions. In this paper, we propose a
novel method, Contrastive Debiasing via Generative Bias-transformation (CDvG),
which works without explicit bias labels or bias-free samples. Motivated by our
observation that not only discriminative models but also image translation
models tend to focus on the malignant bias, CDvG employs an image translation
model to transform one bias mode into another while preserving the
task-relevant information. Additionally, the bias-transformed views are set
against each other through contrastive learning to learn bias-invariant
representations. Our method demonstrates superior performance compared to prior
approaches, especially when bias-free samples are scarce or absent.
Furthermore, CDvG can be integrated with the methods that focus on bias-free
samples in a plug-and-play manner for additional enhancements, as demonstrated
by diverse experimental results.
Related papers
- CosFairNet:A Parameter-Space based Approach for Bias Free Learning [1.9116784879310025]
Deep neural networks trained on biased data often inadvertently learn unintended inference rules.
We introduce a novel approach to address bias directly in the model's parameter space, preventing its propagation across layers.
We show enhanced classification accuracy and debiasing effectiveness across various synthetic and real-world datasets.
arXiv Detail & Related papers (2024-10-19T13:06:40Z) - Bias-Conflict Sample Synthesis and Adversarial Removal Debias Strategy
for Temporal Sentence Grounding in Video [67.24316233946381]
Temporal Sentence Grounding in Video (TSGV) is troubled by dataset bias issue.
We propose the bias-conflict sample synthesis and adversarial removal debias strategy (BSSARD)
arXiv Detail & Related papers (2024-01-15T09:59:43Z) - Improving Bias Mitigation through Bias Experts in Natural Language
Understanding [10.363406065066538]
We propose a new debiasing framework that introduces binary classifiers between the auxiliary model and the main model.
Our proposed strategy improves the bias identification ability of the auxiliary model.
arXiv Detail & Related papers (2023-12-06T16:15:00Z) - Causality and Independence Enhancement for Biased Node Classification [56.38828085943763]
We propose a novel Causality and Independence Enhancement (CIE) framework, applicable to various graph neural networks (GNNs)
Our approach estimates causal and spurious features at the node representation level and mitigates the influence of spurious correlations.
Our approach CIE not only significantly enhances the performance of GNNs but outperforms state-of-the-art debiased node classification methods.
arXiv Detail & Related papers (2023-10-14T13:56:24Z) - Delving into Identify-Emphasize Paradigm for Combating Unknown Bias [52.76758938921129]
We propose an effective bias-conflicting scoring method (ECS) to boost the identification accuracy.
We also propose gradient alignment (GA) to balance the contributions of the mined bias-aligned and bias-conflicting samples.
Experiments are conducted on multiple datasets in various settings, demonstrating that the proposed solution can mitigate the impact of unknown biases.
arXiv Detail & Related papers (2023-02-22T14:50:24Z) - Feature-Level Debiased Natural Language Understanding [86.8751772146264]
Existing natural language understanding (NLU) models often rely on dataset biases to achieve high performance on specific datasets.
We propose debiasing contrastive learning (DCT) to mitigate biased latent features and neglect the dynamic nature of bias.
DCT outperforms state-of-the-art baselines on out-of-distribution datasets while maintaining in-distribution performance.
arXiv Detail & Related papers (2022-12-11T06:16:14Z) - Unsupervised Learning of Unbiased Visual Representations [10.871587311621974]
Deep neural networks are known for their inability to learn robust representations when biases exist in the dataset.
We propose a fully unsupervised debiasing framework, consisting of three steps.
We employ state-of-the-art supervised debiasing techniques to obtain an unbiased model.
arXiv Detail & Related papers (2022-04-26T10:51:50Z) - Information-Theoretic Bias Reduction via Causal View of Spurious
Correlation [71.9123886505321]
We propose an information-theoretic bias measurement technique through a causal interpretation of spurious correlation.
We present a novel debiasing framework against the algorithmic bias, which incorporates a bias regularization loss.
The proposed bias measurement and debiasing approaches are validated in diverse realistic scenarios.
arXiv Detail & Related papers (2022-01-10T01:19:31Z) - General Greedy De-bias Learning [163.65789778416172]
We propose a General Greedy De-bias learning framework (GGD), which greedily trains the biased models and the base model like gradient descent in functional space.
GGD can learn a more robust base model under the settings of both task-specific biased models with prior knowledge and self-ensemble biased model without prior knowledge.
arXiv Detail & Related papers (2021-12-20T14:47:32Z) - Learning Debiased Models with Dynamic Gradient Alignment and
Bias-conflicting Sample Mining [39.00256193731365]
Deep neural networks notoriously suffer from dataset biases which are detrimental to model robustness, generalization and fairness.
We propose a two-stage debiasing scheme to combat against the intractable unknown biases.
arXiv Detail & Related papers (2021-11-25T14:50:10Z) - BiaSwap: Removing dataset bias with bias-tailored swapping augmentation [20.149645246997668]
Deep neural networks often make decisions based on the spurious correlations inherent in the dataset, failing to generalize in an unbiased data distribution.
This paper proposes a novel bias-tailored augmentation-based approach, BiaSwap, for learning debiased representation without requiring supervision on the bias type.
arXiv Detail & Related papers (2021-08-23T08:35:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.