Deep neural networks approach to microbial colony detection -- a
comparative analysis
- URL: http://arxiv.org/abs/2108.10103v2
- Date: Tue, 24 Aug 2021 14:00:12 GMT
- Title: Deep neural networks approach to microbial colony detection -- a
comparative analysis
- Authors: Sylwia Majchrowska, Jaros{\l}aw Paw{\l}owski, Natalia Czerep,
Aleksander G\'orecki, Jakub Kuci\'nski, and Tomasz Golan
- Abstract summary: This study investigates the performance of three deep learning approaches for object detection on the AGAR dataset.
The achieved results may serve as a benchmark for future experiments.
- Score: 52.77024349608834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Counting microbial colonies is a fundamental task in microbiology and has
many applications in numerous industry branches. Despite this, current studies
towards automatic microbial counting using artificial intelligence are hardly
comparable due to the lack of unified methodology and the availability of large
datasets. The recently introduced AGAR dataset is the answer to the second
need, but the research carried out is still not exhaustive. To tackle this
problem, we compared the performance of three well-known deep learning
approaches for object detection on the AGAR dataset, namely two-stage,
one-stage and transformer based neural networks. The achieved results may serve
as a benchmark for future experiments.
Related papers
- Provably Neural Active Learning Succeeds via Prioritizing Perplexing Samples [53.95282502030541]
Neural Network-based active learning (NAL) is a cost-effective data selection technique that utilizes neural networks to select and train on a small subset of samples.
We try to move one step forward by offering a unified explanation for the success of both query criteria-based NAL from a feature learning view.
arXiv Detail & Related papers (2024-06-06T10:38:01Z) - FISBe: A real-world benchmark dataset for instance segmentation of long-range thin filamentous structures [4.9246627979592725]
Instance segmentation of neurons in volumetric light microscopy images of nervous systems enables groundbreaking research in neuroscience.
Yet said multi-neuron light microscopy data exhibits extremely challenging properties for the task of instance segmentation.
We release FlyLight Instance Benchmark (FISBe) dataset, the first publicly available multi-neuron light microscopy dataset with pixel-wise annotations.
arXiv Detail & Related papers (2024-03-29T19:51:34Z) - A large dataset curation and benchmark for drug target interaction [0.7699646945563469]
Bioactivity data plays a key role in drug discovery and repurposing.
We propose a way to standardize and represent efficiently a very large dataset curated from multiple public sources.
arXiv Detail & Related papers (2024-01-30T17:06:25Z) - Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
We introduce a semi-supervised learning approach based on topological projections in self-organizing maps (SOMs)
Our proposed method first trains SOMs on unlabeled data and then a minimal number of available labeled data points are assigned to key best matching units (BMU)
Our results indicate that the proposed minimally supervised model significantly outperforms traditional regression techniques.
arXiv Detail & Related papers (2024-01-12T22:51:48Z) - Application of data engineering approaches to address challenges in
microbiome data for optimal medical decision-making [0.0]
The study addresses the issues inherent to microbiome datasets and could be highly beneficial for providing personalized medicine.
The prototype employed in the study addresses the issues inherent to microbiome datasets and could be highly beneficial for providing personalized medicine.
arXiv Detail & Related papers (2023-06-30T05:36:39Z) - Three-dimensional microstructure generation using generative adversarial
neural networks in the context of continuum micromechanics [77.34726150561087]
This work proposes a generative adversarial network tailored towards three-dimensional microstructure generation.
The lightweight algorithm is able to learn the underlying properties of the material from a single microCT-scan without the need of explicit descriptors.
arXiv Detail & Related papers (2022-05-31T13:26:51Z) - Combining Observational and Randomized Data for Estimating Heterogeneous
Treatment Effects [82.20189909620899]
Estimating heterogeneous treatment effects is an important problem across many domains.
Currently, most existing works rely exclusively on observational data.
We propose to estimate heterogeneous treatment effects by combining large amounts of observational data and small amounts of randomized data.
arXiv Detail & Related papers (2022-02-25T18:59:54Z) - MuCoMiD: A Multitask Convolutional Learning Framework for miRNA-Disease
Association Prediction [0.4061135251278187]
We propose a novel multi-tasking convolution-based approach, which we refer to as MuCoMiD.
MuCoMiD allows automatic feature extraction while incorporating knowledge from 4 heterogeneous biological information sources.
We construct large-scale experiments on standard benchmark datasets as well as our proposed larger independent test sets and case studies.
MuCoMiD shows an improvement of at least 5% in 5-fold CV evaluation on HMDDv2.0 and HMDDv3.0 datasets and at least 49% on larger independent test sets with unseen diseases and unseen diseases over state-of-the-art approaches.
arXiv Detail & Related papers (2021-08-08T10:01:46Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.